VI. Методы измерения ионизирующих излучений

УДК 539.125.5: 539.125

О ВОЗМОЖНОСТИ ИСПОЛЬЗОВАНИЯ КОНСТАНТЫ ДЕЛЕНИЯ V_{SF} ДЛЯ ОПРЕДЕЛЕНИЯ ПОТОКА ОТКРЫТЫХ РАДИОНУКЛИДНЫХ ИСТОЧНИКОВ НЕЙТРОНОВ ²⁵²Cf А.В. Янушевич, В.Д. Севастьянов

ФГУП «ВНИИФТРИ», Менделеево, Московская обл. sevast@vniiftri.ru

Рассматривается возможность применения открытого источника деления ²⁵²Cf для точного определения потока радионуклидных источников нейтронов.

Способ измерения потока состоит в определении его осколочной активности и умножении её на среднее значение числа нейтронов, вылетающих на один акт спонтанного деления нуклида²⁵²Cf.

Рассмотрены и реализованы на практике методы точного измерения осколочной активности нуклида²⁵²Cf.

Ключевые слова: константа деления, радионуклидные источники нейтронов, деление нуклида, осколочная активность

ON THE POSSIBILITY OF USING THE $\bar{\nu}_{SF}$ FISSION CONSTANT FOR DETERMINING FLOW OF OPEN RADIONUCLIDE SOURCES OF ²⁵²Cf NEUTRONS A.V. Ianushevich, V.D. Sevastianov

FSUE "VNIIFTRI", Mendeleevo, Moscow region sevast@vniiftri.ru

The possibility of application of the open fission source of 252 Cf to accurately determine the flux of radionuclide neutron sources is considered.

A method for measuring the flux consists in determining its fission-fragment activity and multiplying it by the average value of the number of neutrons emitted by one act of spontaneous fission of the ²⁵²Cf nuclide.

Methods for the accurate measurement of the fragmentation activity of the ²⁵²Cf nuclide are considered and put into practice.

Key words: fission constant, radionuclide sources of neutrons, fission of a nuclide, fragmentation activity.

Радионуклидные $Pu(\alpha, Be)$ источники нейтронов давно нашли широкое применение в атомной науке и технике, например, для градуировки и проверки стабильности радиометрической аппаратуры, применяемой для контроля работы систем управления и защиты ядерных реакторов, биологической защиты ядерных реакторов. Перспективным также становится применение радионуклидных источников ²⁵²Cf для лечения онкозаболеваний. Они

Альманах современной метрологии, 2020, № 1 (21)

Методы измерения ионизирующих излучений 149

всё шире используются в мировой практике нейтронных измерений как источники со стандартными энергетическими спектрами нейтронов для изучения и корректировки сечений дозиметрических ядерных реакций и для исследования энергетических спектров нейтронов разрабатываемых ядерных реакторов [1].

В излагаемой ниже статье авторы рассматривают возможность применения радионуклидного источника ²⁵²Cf и для другой цели, а именно — измерения точного значения потока нейтронов в телесный угол 4π . Способ измерения потока нейтронов (Ф), излучаемого открытым радионуклидным источником ²⁵²Cf, состоит в определении его осколочной активности (A_F) и умножении её на среднее значение числа нейтронов, вылетающих на один акт спонтанного деления нуклида ²⁵²Cf (\overline{v}_{SF}):

$$\Phi = A_F \,\overline{\nu}_{SF} \tag{1}$$

Осуществление этого способа определения потока нейтронов источника ²⁵²Cf с требуемой метрологической практикой точностью (2–6%) становится возможным только тогда:

- когда константа спонтанного деления нуклида 252 Cf \overline{v}_{SF} установлена в мировой практике нейтронных измерений с точностью не менее 2%;
- разработаны радиометрические приборы, обеспечивающие измерение осколочной активности открытого источника ²⁵²Cf с точностью не менее 2%.

В таблице 1 приведён ряд измеренных в мировой практике значений константы \overline{v}_{SF} для нуклида ²⁵²Cf [2–15].

Таблица	1
гассинца	•

N⁰	Фамилия первого автора публикации	Значение константы <i>V</i> _{SF} для ²⁵² Cf
1	A. Moat	$3,718 \pm 0,056$
2	I. Asplund-Nilsson	$3,721 \pm 0,037$
3	J.C. Hopkins	$3,734 \pm 0,031$
4	D.W. Colvin	$3,705 \pm 0,015$
5	D.W. Colvin	$3,691 \pm 0,031$
6	A. De Volpi	$3,741 \pm 0,028$
7	P.H. White	$3,787 \pm 0,031$
8	E.J. Axton	$3,691 \pm 0,020$
9	A. De Volpi	$3,720 \pm 0,017$
10	Ю.С. Замятин	$3,740 \pm 0,018$
11	Б.М. Александров	$3,770 \pm 0,045$
12	J.W. Boldeman	$3,738 \pm 0,015$
13	H. Condé	$3,766 \pm 0,066$
14	Б.М. Александров	$3,747 \pm 0,036$

TT					252 ~
Измеренные	зналениа	KOHCTAHTLI '	V_{cr} $\Pi \Pi \Pi$	нуклила	232('t
rismeperindie	зпачения	KUllerallibi	изе для	пуклида	

Рекомендованное для применения в атомной науке и технике значение константы \overline{v}_{SF} для ²⁵²Cf — 3,756 ± 0,012 [16]. Из анализа приведённых в таблице данных можно видеть, что константа \overline{v}_{SF} уже установлена с погрешностью менее 2% в доверительном интервале 0,99. Это соответствует указанному выше первому требованию измерения потока быстрых нейтронов в открытых источниках нейтронов ²⁵²Cf.

В процессе исследований использовали открытый источник с нуклидом 252 Cf, изготовленный Радиевым институтом им. В.Г. Хлопина. Источник имеет форму диска из полированного оргстекла диаметром 24 мм и толщиной 2 мм. Радионуклид 252 Cf нанесён на одну из сторон диска. Диаметр активного слоя источника менее 8 мм. Толщина активного слоя делящегося вещества с 252 Cf была существенно меньше пробега осколков деления в веществе. Такая незначительная толщина слоя делящегося вещества в источнике делает возможным регистрировать практически каждый акт спонтанного деления при измерении осколочной активности *AF* открытого источника нейтронов 252 Cf и расчёте потока нейтронов по формуле (1).

Ядерно-физические характеристики изотопа ²⁵²Сf и сопутствующих ему радионуклидов приведены в таблице 2 [17].

Таблица 2

	T			Удельная активность на 1 мг ²⁵² Сf		Кон-
Нук-	ГИП	полураспада,	Энергия	Спонтанно	е деление	станта
лид	распада ялря	лет (погреш-	α-частиц,			17
	лдра	ность)	кэВ, эмис-	дел/с	нейтр/с	V SF
			сия, %			
²⁵² Cf	$\alpha + SF$	2,638(12) (эф)	6118,3(84,3)			
CI	α(96,9%)	2,722(10) (парц)	6075,7(15,5)			
	SF(3,10%)	85,38(39)	5976(0,28)	$6,146(28) \cdot 10^8$	$2,297(12) \cdot 10^9$	3,756
250 Cf	α(96,9%)	13,08(9)	6031(84)			
CI	SF(3,10%)	$1,70(7) \cdot 10^4$	5989(16)	$3,11(13) \cdot 10^{6}$	$1,09(5) \cdot 10^7$	3,52
²⁵⁴ Cf	α(0,31%)	60,3(1) дн.	5834(83)			
CI	SF(>99%)	60,5(1) дн.	5792(17)	$3,143(10) \cdot 10^{11}$	$1,22(2) \cdot 10^{12}$	3,89
	α(91/4%)	$3,703(35) \cdot 10^5$	5078(82)			
²⁴⁸ Cm	<i>SF</i> (8,6%)	$4,112(41) \cdot 10^{6}$	5034(18)	$1,30(1) \cdot 10^4$	$4,12(5) \cdot 10^4$	3,173
	$\alpha + SF$	$3,397(32) \cdot 10^5$				

Ядерно-физические характеристики изотопа ²⁵²Cf и сопутствующих ему радионуклидов

Примечание: α — альфа-распад; *SF* — спонтанное деление; (α + *SF*) — эффективный распад ядра в результате двух процессов.

Из таблицы 2 можно сделать вывод, что из слоя делящегося вещества источника 252 Cf вылетают не только осколки деления, но и α -частицы с энергией ~6 МэВ. Причём количество вылетающих α -частиц в 30 раз превышает количество спонтанных делений в активном слое источника 252 Cf. Поэтому приходится принимать специальные меры для надёжного разделения импульсов от осколков деления и α -частиц детектирующей электронной аппаратурой.

Наиболее точные измерения активности источников тяжёлых заряженных частиц (α -частиц, осколков деления ядер) проведены ранее в Национальном бюро стандартов США, во ВНИИМ им. Д.И. Менделеева и во ФГУП «ВНИИФТРИ». При измерении активности низкоактивных источников обычно используют методы со счётчиками с большими телесными углами регистрации α -частиц. В частности, в геометриях -2π , -4π , методы (α , γ) совпадений. Эти методы измерений требуют введения в измеренную активность дополнительных поправок таких, как поправка на самопоглощение α -частиц в активном слое источников, на рассеяние α -частиц от подложек источников и др. Величины указанных поправок также зависят от материала подложек и состояния их поверхностей, что существенно увеличивает погрешность измерений активности. Отдельные методы измерений активности требуют, кроме того, точного знания схем распада α -излучателей.

Для наиболее точных измерений активности источников средней и высокой интенсивности нашли более широкое применение следующие два метода: метод регистрации α -частиц в геометрии определённого телесного угла и метод регистрации α -частиц в геометрии малого телесного угла. Они не требуют введения большого количества поправок в измеряемую активность источника, но требуют точного определения телесного угла регистрации α частиц, который рассчитывается в настоящее время с погрешностью не более 0,1%. Для первого метода измерений активности, связанного с регистрацией α -частиц источника ²⁵²Cf в геометрии определённого телесного угла, очень важно снизить зависимость телесного угла регистрации α -частиц от расстояния между источником и детектором α -частиц. Это удалось сделать автору работы [18], что позволило существенно уменьшить погрешность измерения α -активности источников.

Для измерения α -активности источников вторым методом важно точно измерить диаметры коллимирующих диафрагм, установленных перед детектором α -частиц и активным пятном источника, а также расстояние между коллимирующими диафрагмами. Именно эти два метода и были использованы авторами статьи при разработке двух приборов для измерения осколочной активности источника спонтанного деления ²⁵²Cf [19]. Геометрия измерений активности источников в них представлена на рис. 1 и 2.

Альманах современной метрологии, 2020, № 1 (21)

Рис. 1. Геометрия измерительной камеры 1π-счётчика:

1 — экранирующий стопор; 2 — коллимирующая диафрагма; 3 — источник; 4 — детектор

Рис. 2. Геометрия камеры измерительной установки с малым телесным углом: 1 — источник; 2 — корпус измерительной камеры УМТУ; 3 — перегородки из полиэтилена; 4 — коллимирующая диафрагма; 5 — детектор α-частиц

Экранирующий стопор 1 на рис. 1 1 π -счётчика служит для исключения большой зависимости геометрического фактора регистрации от положения α-источника 3 относительно диафрагмы 2, находящейся перед сцинтилляционным спектрометрическим детектором CsJ(Tl) 4 толщиной 0,35 мм и диаметром 63 мм. Такая малая толщина сцинтилляционного детектора взята, исходя из условия оптимальной регистрации осколков деления ядер ²⁵²Cf и минимального вклада фоновых импульсов при измерении осколочной активности источника. Энергетический аппаратурный спектр с 1 π -счётчика со сцинтилляционным кристаллом CsJ(Tl) от стандартного α-источника ²³³U + + ²³⁸Pu + ²³⁹Pu (ОСАИ) представлен на рис. 3.

Альманах современной метрологии, 2020, № 1 (21)

Рис. 3. Аппаратурный энергетический спектр α -излучения источника ²³⁸Pu + ²³⁹Pu + ²³³U (ОСАИ): N_k — номер канала; N — число импульсов

Из рисунке 3 можно видеть, что пики от α -линий ²³⁹Pu и ²³⁸Pu с энергиями 5156 и 5486 кэB, отличающиеся по энергии всего на 336 кэB, достаточно хорошо разрешаются.

Дискриминационная характеристика 1π -счётчика со сцинтилляционными детекторами с кристаллом CsJ(Tl) и поликристаллом ZnS(Ag) приведена на рис. 4.

Из рисунка 4 следует, что использование 1π -счётчика со сцинтилляционным монокристаллом CsJ(Tl) более предпочтительно, чем с поликристаллом ZnS(Ag). Внешняя поверхность сферического экранирующего стопора *1* выполнена ступенчатой с целью снижения требований к точности её изготовления. Геометрический фактор для 1π -счётчика (*G*) рассчитывали по формуле, предложенной в работе [18] (в обозначениях рис. 1).

$$G = \frac{1}{2} \left(\frac{1}{\sqrt{1 + \left(\frac{b}{a}\right)^2}} - \left(\frac{1}{\sqrt{1 + \left(\frac{c}{a}\right)^2}}\right) \right).$$
(2)

Рис. 4. Дискриминационные характеристики 1*п*-счётчика со сцинтилляционным монокристаллом и поликристаллом, с⁻¹; *U* — порог дискриминации импульсов с 1*п*-счётчика

На рисунке 5 показано, как изменяется геометрический фактор (телесный угол) регистрации α -частиц для 1 π -счётчика при смещении α -источника по оси его камеры при наличии экранирующего стопора и без него (в обозначении рис. 1).

Рис. 5. Изменение геометрического фактора для точечного источника в измерительной камере 1π-счётчика при его смещении по оси камеры: кривая 1 — с экранирующим стопором; 2 — без экранирующего стопора

Альманах современной метрологии, 2020, № 1 (21)

Из рисунка 5 видно, что в случае измерения с экранирующим стопором требования к точности определения геометрического фактора *G* значительно снижены. Из рисунка 6 можно видеть, что геометрический фактор 1π -счётчика остаётся постоянным для случая *I*, т.е. для оптимального расположения α -источника относительно детектора по оси камеры a = 8,081, h = 16,488 (обозначения рис. 6 согласно рис. 1).

Рис. 6. Изменение геометрического фактора для точечного источника в измерительной камере 1π -счётчика при его смещении по радиусу в плоскости перпендикулярном оси камеры: 1 - a = 8,081, h = 16,488; 2 - a = 8,581, h = 16,988; 3 - a = 7,581, h = 15,988; 4 - a = 6,631, h = 15,038

Как уже отмечалось выше, геометрия измерений, свойственная второму методу измерений осколочной активности ²⁵²Cf, связанному с регистрацией α -частиц (либо осколков деления ядер) в геометрии малого телесного угла регистрации, представлена на рис. 2 и является «жёсткой». Расстояние (*h*) между источником частиц *l* и детектором *4* фиксировано. Перед источником и детектором установлены коллимирующие диафрагмы 2. Телесный угол регистрации заряженных частиц определяется диаметрами отверстий в коллимирующих диафрагмах 2 и 4 и расстояние *h* между ними, которые определены с погрешностью менее одного микрона на измерительных микроскопах. Внутри измерительной камеры установлены кольца *5* из полиэтилена, поглощающие рассеянные от стенок камеры заряженные частицы. На рисунке 7 приведена зависимость вклада рассеянных от стенок камеры α -частиц (жирная линия — расчётная, • — измеренная). Из приведённого рисунка можно видеть, что этот вклад незначителен вплоть до длины камеры менее 150 мм.

Альманах современной метрологии, 2020, № 1 (21)

Рис. 7. Зависимость вклада рассеянных α-частиц от длины камеры (*L*): / — рассчитанная; ф — измеренная с перегородками

В качестве детектора α -частиц использовали полупроводниковый кремниевый поверхностно-барьерный детектор типа ДКС. Энергетическое разрешение этого детектора позволило полностью разделить импульсы от α -частиц и осколков деления, излучаемых источником спонтанного деления ²⁵²Cf.

Геометрический фактор регистрации заряженных частиц *G* для установки с малым телесным углом рассчитывали по формуле [20]:

$$G = \frac{d^{2}}{16h^{2}} \left\{ 1 - \frac{3}{16h^{2}} (d^{2} + D^{2}) + \frac{5}{128h^{4}} (d^{4} + D^{4} + 3d^{2}D^{2}) - \frac{35}{4096h^{6}} (d^{6} + D^{6} + 6d^{4}D^{2} + 6d^{2}D^{4}) \right\} - \frac{d^{2}}{16h^{2}} \left[\frac{2}{3} \frac{t}{dD^{2}h^{2}} (D^{2} - d^{2}) \right],$$
(3)

где d и D — диаметры отверстий в коллимирующих диафрагмах, установленных перед детектором и активным пятном источника заряженных частиц, соответственно; h — расстояние между источником и детектором; t — толщина диафрагмы перед детектором.

Кроме описанных выше основных средств измерений, в исследованиях применялись и вспомогательные средства измерений:

- закрытые серийные источники спонтанного деления ²⁵²Cf типов НИК и ИК252М11. Радиоактивное вещество с ²⁵²Cf размещалось в них в герметичных двойных оболочках из стали 12Х18М10Т. Внешние габаритные размеры закрытых источников: диаметр 8 мм и высота 10 мм. Следует отметить, что поверка таких источников по потоку нейтронов в телесный угол –4π проводилась во ВНИИМ им. Д.И. Менделеева в разное время. Технические характеристики источников приведены в таблице 3.
- радиометр нейтронов РНЗ с замедляющей сборкой для измерения потоков источников быстрых нейтронов, созданный авторами статьи.

Альманах современной метрологии, 2020, № 1 (21)

Таблица 3

№ п/п	Источники нейтронов ²⁵² Cf	Завод- ской номер	Поток нейтронов в телесный угол 4π-стерадиан, с ⁻¹ , %	Свидетельство (организация, выдававшая свидетельство)	Дата выдачи свидетель- ства
1	²⁵² Cf	64/12	$1,70 \cdot 10^{6} (\pm 8)$ $7,18 \cdot 10^{5} (2,0)$	П № 36285 СК RU 01 № 250/0403-2018 (ВНИИМ) расширенная неопределённость 2,3 при коэффициенте К = 2	06.08.2015 10.12.2018
2	²⁵² Cf	5-6/02	$1,03 \cdot 10^{8} (\pm 10) \\ 2,85 \cdot 10^{5} (\pm 3)$	П СП № 318/98-СИ (НИЦ СНИИП)	07.05.1976 10.11.1998 – 10.11.2001

Технические характеристики закрытых источников ²⁵²Cf

Результаты измерения осколочной активности открытого источника 252 Cf на диске из оргстекла в геометриях определённого угла (1 π -счётчик) и малого телесного угла (УМТУ) приведены в таблицах 4 и 5. В таблицах приведены соответственно: дата измерений, число зарегистрированных импульсов от осколков деления, время измерений, скорость счёта импульсов.

Таблица 4

Результаты измерений осколочной активности источни	ка ²⁵² Сf
на установке в геометрии определённого телесного угла (1	π-счётчик)

№ п/п	Дата измерений	Число зарегистри- рованных импуль- сов от источника ²⁵² Cf, ед.	Время измерений, с	Скорость счёта импульсов, с ⁻¹	Скорость счёта импульсов, с ⁻¹ на 19.03.2002
1	02.10.2002	23719	1200	19,766	28,953
2	19.03.2001	29822	1000	29,822	29,822
3	19.03.2001	107155	3600	29,765	29,765
4	19.03.2001	108689	3958	30,191	30,191
	29,683				

Таблица 5

Результаты измерений осколочной активности источника ²⁵²Cf. Установка с малым телесным углом (УМТУ)

№ п/п	Дата измерений	Число зарегистрированных импульсов от источника, ед.	Время измерений, с	Скорость счёта импульсов от источника, с ⁻¹
1	15.10.2002	9080	14000	0,648570
2	15.10.2002	2690	4000	0,672500

Na	Пата	II	Влана	Скорость счёта
л⁰ п/п	дата измерений	число зарегистрированных импульсов от источника, ед.	время измерений, с	импульсов от источника, с ⁻¹
3	20.10.2002	11970	18000	0,665000
4	20.10.2002	2650	4000	0,662500
5	22.10.2002	7249	10800	0,671204
6	22.10.2002	9799	15000	0,653307
7	22.10.2002	6634	10000	0,663400
8	23.10.2002	6442	10000	0,644200
9	23.10.2002	5078	8000	0,634750
10	24.10.2002	6543	10000	0,654300
11	24.10.2002	5277	8000	0,659625
12	25.10.2002	4636	7000	0,662296
фон	25.10.2002	27	7000	0,003857
Cp	оедняя скорос	ть счёта импульсов от источн	ика ²⁵² Cf, c ⁻¹	0,657630

Осколочную активность источника (*A_F*) рассчитывали по идентичной формуле:

$$A_F = \frac{n}{2G},\tag{4}$$

П

где *n* — среднее значение скорости счёта импульсов от осколков деления за вычитанием фоновых импульсов; *G* — геометрический фактор регистрации осколков деления той или иной установки. Геометрический фактор регистрации осколков деления для 1π -счётчика — 0,19612, а для установки УМТУ — 6,302 · 10⁻³. Получены следующие значения осколочной активности источника ²⁵²Cf:

1π-счётчик	75,676 расп/с на 19.03.2001 49,920 расп/с на 20.10.2002
УМТУ	52,176 расп/с на 20.10.2002

Из приведённых данных на 20.10.2002 видим, что осколочная активность источника ²⁵²Cf, измеренная с помощью 1 π -счётчика, на 4,6% меньше, чем на установке УМТУ. Это можно объяснить только тем, что импульсы от осколков деления и α -частиц на 1 π -счётчике не полностью разделены в результате меньшего энергетического разрешения сцинтилляционного детектора CsJ(Tl). Из этого можно сделать вывод, что для расчёта потока нейтронов источника ²⁵²Cf следует взять значение осколочной активности на установке с малым телесным углом. $A_F = 52,176$ расп/с. Поток нейтронов источника ²⁵²Cf рассчитываем по формуле (1). Для константы спонтанного деления берём значение $\overline{v}_{SF} = 3,756$, рекомендуемое для применения в мировой практике нейтронных измерений [16]. Тогда получаем следующее значение

Альманах современной метрологии, 2020, № 1 (21)

для потока Φ источника ²⁵²Cf в телесный угол $4\pi \Phi = 195,974$ нетр/с на 20.10.2002 г.

Используя это значение потока нейтронов для источника нейтронов в форме диска, оценим поток нейтронов вспомогательного закрытого источника нейтронов 252 Cf (5-6/02) (см. таблицу 3) на дату аттестации установок для измерения осколочной активности (УМТУ и 1 π -счётчик) 20.10.2002 г.

 Φ (5-6/02) = $\Phi \cdot 574,65 = 195,974 \cdot 574,65 = 1,126 \cdot 10^5$ нейтр/с, (5) где Φ — поток нейтронов источника ²⁵²Cf в форме диска; число 574,65 — это отношение скоростей счёта импульсов радиометра нейтронов PH3 от источников ²⁵²Cf (5-6/02) и ²⁵²Cf в форме диска. Время выдержки источника ²⁵²Cf (5-6/02) после его изготовления до начала времени аттестации установ-ки УМТУ и 1 π -счётчика — 26,439 лет. Дата изготовления источника — 07.05.1976 г. Поток нейтронов на дату изготовления и аттестации источника — 1,03 \cdot 10⁸ нейтр/с. Поток нейтронов источника ²⁵²Cf на 20.10.2002 г., полученный расчётом с учётом закона радиоактивного распада, будет 0,9904 \cdot 10⁵ расп/с. Из изложенного выше можно заключить, что поток нейтронов источника ²⁵²Cf (5-6/02), измеренный с применением установок для измерения осколочной активности и рассчитанный с применением закона радиоактивного распада, отличается на 13,7%.

В таблице 6 приведены измеренные на радиометре нейтронов PH3 скорости счёта на 22–24.04.2019 г. от вспомогательных закрытых источников ²⁵²Cf, изготовленных и аттестованных в разное время.

Таблица 6

	Радиометр нейтронов РНЗ				
	²⁵² Cf(64/12), 22.04.2019		²⁵² Cf(5-6/02), 24.04.2019		
№ п/п	Количество заре- гистрированных импульсов (время измерений, 300 с)	Скорость счёта им- пульсов, с ⁻¹	Количество заре- гистрированных импульсов (время измерений, 3600 с)	Скорость счёта им- пульсов, с ⁻¹	
1	176098	586,99	33515(3600)	9,3097	
2	176579	588,60	33355(3600)	9,2653	
3	176679	588,93	33471	9,2975	
4	176691	588,97	33539	9,3164	
5	176329	587,76	33051	9,1808	
6	176415	588,05	33321	9,2558	
7			33558	9,3217	
8			33149	9,2081	

Измерение скоростей счёта импульсов от нейтронов вспомогательных закрытых источников ²⁵²Cf

Продолжение таблицы 6

№ п/п	²⁵² Cf(64/12), 22	2.04.2019	²⁵² Cf(5-6/02), 24	4.04.2019
	Количество заре- гистрированных импульсов (время измерений, 300 с)	Скорость счёта им- пульсов, с ⁻¹	Количество заре- гистрированных импульсов (время измерений, 3600 с)	Скорость счёта им- пульсов, с ⁻¹
9		Среднее зна- чение 588,22		Среднее зна- чение 9,2694
10		СКО 0,615		СКО 0,04191

Источник 252 Cf (5-6/02) от 07.05.1976 г., а источник 252 Cf (64/12) от 06.08.2015 г. Время выдержки источников с момента их изготовления до начала времени измерений их скоростей реакций 42,964 и 3,717 года соответственно.

С помощью экспериментальных данных таблицы 6 нетрудно определить поток нейтронов источника 252 Cf (5-6/02) на дату измерения скоростей счёта импульсов от закрытых источников нейтронов 252 Cf по формуле:

$$\Phi\left(^{252}\mathrm{Cf}(5\text{-}6/02)\right) = \frac{n^{252}\mathrm{Cf}(5\text{-}6/02)}{n^{252}\mathrm{Cf}(64/12)}\Phi^{252}\mathrm{Cf}(64/12),\tag{6}$$

где Φ^{252} Cf (64/12) — значение потока, скорректированное на дату измерения 24.09.2019 г. 6,519 · 10⁵ нейтр/с; *n* — скорости счёта импульсов от источников.

Полученное таким образом значение потока нейтронов составило 1,02 × $\times 10^4$ нейтр/с, а рассчитанное с учётом закона радиоактивного распада — 1,289 $\cdot 10^3$ нейтр/с. Как видим, значения потоков нейтронов отличаются практически на порядок, что можно объяснить только присутствием в составе активного слоя источника ²⁵²Cf других спонтанно делящихся нуклидов, такими могут быть:

- спонтанно делящийся нуклид ²⁵⁰Cf, который может нарабатываться одновременно с основным нуклидом источника ²⁵²Cf в качестве примеси во время технологического процесса получения ²⁵⁰Cf. Увеличение вклада в поток нейтронов ²⁵²Cf может проходить за счёт его большего периода полураспада, по сравнению с периодом полураспада ²⁵²Cf (см. таблицу 2);
- спонтанно делящийся нуклид ²⁴⁸Cm, нарабатываемый в результате α -распада основного нуклида ²⁵²Cf по реакции ²⁵²Cf $\alpha \rightarrow = {}^{248}$ Cm. Увеличение вклада в поток нейтронов источника за счёт этого процесса происходит по мере α -распада ²⁵²Cf и сроков эксплуатации источника.

Так, поток нейтронов источника 252 Cf (5-6/02) на дату аттестации установок для измерения осколочной активности УМТУ и 1π -счётчика 20.10.2002 г.

Альманах современной метрологии, 2020, № 1 (21)

после выдержки его с момента изготовления в течение 26,439 лет увеличился на 13,7%, а после выдержки его в течение 42,964 лет — на порядок.

После аттестации по потоку нейтронов источника 252 Cf(64/12) во ВНИИМ 10.12.2018 г. с погрешностью 2% и сравнительных измерений его по потоку нейтронов с источником 252 Cf(5-6/02) 24.04.2019 г. во ВНИИФТРИ была проведена оценка вкладов в поток нейтронов отдельных излучателей в последнем, с учётом выдержки этого источника с момента его изготовления (42,964 лет), которая составила 252 Cf (12,5%), 250 Cf (69,7%) и 248 Cm(18,19%). Отсюда следует заключить, что максимальный вклад в поток нейтронов обусловлен 250 Cf, что можно объяснить сравнительной близостью их периодов полураспада (таблица 2) и большим содержанием нуклида 250 Cf в активном веществе источника на момент его изготовления 252 Cf (~14%).

Основные результаты работы.

1. Впервые реализован предлагаемый нами метод использования константы спонтанного деления \overline{v}_{SF} для определения потока открытых радионуклидных источников ²⁵²Cf, который обеспечивает требуемую на практике точность измерений.

2. Разработаны два радиометрических прибора для прецизионного определения осколочной активности источника ²⁵²Cf, в которых реализованы два метода регистрации осколков деления в геометриях определённого и малого телесных углов.

3. Проведена оценка вкладов нейтронов закрытого источника ²⁵²Cf от спонтанного деления основного нуклида ²⁵²Cf, примесного нуклида ²⁵⁰Cf и нуклида ²⁴⁸Cm, нарабатываемого в результате α-распада ²⁵²Cf после выдержки источника в течение 42,5 лет. Показано, что основной вклад нейтронов в источнике ²⁵²Cf 69,6% обусловлен нейтронами примесного нуклида ²⁵⁰Cf, а вклад, равный только 12,6%, обусловлен нейтронами основного нуклида источника ²⁵²Cf.

Литература

- Grudl J., Eisenhauer C. Benchmark neutron fields for reactor dosimetry // Neutron cross sections for reactor dosimetry. V. 1. IAEA-208. Vienna, 1978. P. 53–104.
- 2. Moat A., Mather D.S., Mc Taggart M.H. // J. Nucl. Energy. 1961. V. 15. P. 102.
- 3. Asplund-Nilsson I., Condé H., Starfelt N. An absolute measurement of \overline{v} of 252 Cf // Nuclear Science and Engineering. 1963. V. 16. P. 124.
- 4. Hopkins J.C., Diven B.C. // Nucl. Phys. 1963. V. 48. P. 433.
- 5. Colvin D.W., Sowerby M.G. 1963. EANDC (UK)-30 "U"; Proc. IAEA symposium of physics and chemistry of fisson. 1965. V. 2. P. 25.
- 6. Colvin D.W., Sowerby M.G. Nuclear Data for Reactors. Vienna // IAEA. V. 1967. P. 307.

Альманах современной метрологии, 2020, № 1 (21)

- De Volpi A., Porges K.G. Nuclear Data for Reactors. Vienna // IAEA. V. 1967. P. 297.
- 8. White P.H., Axton E.J. // J. Nucl. Energy. 1968. V. 22. P. 73.
- 9. Axton E.J., Bardell A.G., Audric B.N. EANDC (UK)-110. 1969. P. 70.
- 10. De Volpi A., Porges K.G. // J. Nucl. Energy. 1972. V. 26. P. 75.
- 11. Замятин Ю.С., Крошкин Н.И. и др. // Атомная энергия. 1970. Т. 29. С. 95.
- Александров Б.М., Белов Л.М., Крамаровский Я.М., Петржак К.А., Прусаков А.Г., Шлямин Э.А. // Нейтронная физика. Материалы 2-й Всесоюзной конференции по нейтронной физике. Т. 4. Киев, 28 мая – 1 июня 1973. Обнинск, 1974. С. 76.
- 13. Boldeman J.W. // Nucl. Sci. Engng. 1974. V. 55. P. 188.
- Conde H., Holmerg M. // Нейтронная физика. Материалы 2-й Всесоюзной конференции по нейтронной физике. Т. 4. Киев, 28 мая – 1 июня 1973. Обнинск, 1974. С. 130.
- 15. Александров Б.М., Белов Л.М., Драбчинский Л.В., Крамаровский Я.М., Ложкомоев Г.Е., Матюханов В.Г., Петржак К.А., Прусаков А.Г., Сорокина А.В., Шлямин Э.А. // Доклад на 3-й конференции по нейтронной физике. Киев, 1975.
- 16. Hanna G.C., Westcott C.H. e.a. // Atomic Energy Rev. 1969. V. 7. No. 4. P. 3.
- Сурин В.М., Фомушкин Э.Ф. Периоды полураспада долгоживущих изотопов трансактиниевых элементов (от ²²⁸Th до ²⁵⁷Fm) // ВАНТ. Серия «Ядерные константы». Научно-технический сборник. Вып. 4 (Н8). Нейтронные константы и параметры. ЦНИИАтоминформ. 1982. С. 3–38.
- 18. Робинсон Г.П. Метрология ионизирующих излучений. М.: Госатомиздат, 1962.
- Васильев Р.Д., Севастьянов В.Д., Цой В.С., Давиденко В.А. Образцовая радиометрическая установка типа УОР-1 для измерения активности α-источников. Методика и аппаратура для точных измерений параметров ионизирующих излучений // Труды ВНИИФТРИ. М., 1975. Вып. 22 (52). С. 39–44.
- 20. Curtis M.L., Heyd J.W., Olt R.G., Eichelberger J.F. // Nucleonics. 13 (No. 5). 1955. 38-UU.