Фундаментальные, теоретические исследования в метрологии УДК 539.194 ЛАЗЕРНАЯ НАКАЧКА В СТАНДАРТАХ ЧАСТОТЫ НА АТОМАХ ЦЕЗИЯ И РУБИДИЯ А.И. Магунов^{1,2}, В.Г. Пальчиков^{1,3}

¹ФГУП «ВНИИФТРИ», Менделеево, Московская обл., ²Институт общей физики им. А.М. Прохорова РАН, Москва, ³Национальный исследовательский ядерный университет «МИФИ», Москва. e-mail: palchikov@vniiftri.ru

Получены аналитические выражения для стационарных населенностей магнитных подуровней сверхтонкой структуры основных состояний щелочных атомов n2S1/2 Fg = I-1/2u Ff = I+1/2 (главное квантовое число n = 5, спин ядра I = 3/2 для 87Rb u n = 6, I = 7/2 для ^{133}Cs) при одновременной оптической накачке в резонансных лазерных полях с линейной поляризацией на переходах Fg \leftrightarrow Fe=Fg u Ff \leftrightarrow Fe=Ff линий D2 ($n2S1/2 \rightarrow n2P3/2$) в зависимости от начальных населенностей. Показано, что последовательное изменение поляризации поля на переходе Ff \leftrightarrow Fe=Ff полностью переводит атомы на нижний подуровень «часового» M1-перехода Fg $M=0 \leftrightarrow$ Ff M=0 в рубидиевом u цезиевом стандартах частоты CBЧ-диапазона, что максимально повышает величину отношения «сигнал/шум» регистрирующей системы.

Ключевые слова: рубидиевые и цезиевые стандарты частоты, оптическая накачка, резонансные лазерные поля.

Введение

В настоящее время наивысшую точность имеют стандарты времени и частоты нового поколения – атомные фонтаны [1-5], основанные на лазерном охлаждении атомов цезия. В сравнении с классическими микроволновыми стандартами частоты, основанными на пучке тепловых атомов цезия [6], точность и стабильность независимого воспроизведения единиц времени и частоты в атомных фонтанах как минимум на порядок выше за счет минимизации доплеровского сдвига и составляет несколько единиц шестнадцатого знака [3, 4]. Достаточно высокая величина отношения сигнал/шум в регистрирующей системе стандарта частоты, определяющая длительность непрерывных измерений, пропорциональна плотности атомного пучка. Для цезиевых фонтанов необходим учет спин-обменного сдвига частоты «часового» перехода, который также пропорционален плотности атомов. Таким образом, требуется оптимизация начальной относительной населенности атомов в состояниях, формирующих «часовой» переход. Одним из подходов в решении этой задачи является применение оптической накачки для магнитных подуровней [7]. При этом для рубидиевого стандарта ограничения по спин-обменному сдвигу частоты являются менее жесткими.

Вместе с тем, актуальной задачей является разработка оптимальных схем построения квантовых дискриминаторов на ячейке с парами щелочных металлов с использованием лазерной накачки и создания на их основе кванто-

вых стандартов времени и частоты СВЧ диапазона. В настоящее время это направление интенсивно развивается на стыке фундаментальных и прикладных исследований, что связано с прогрессом технологий полупроводниковых лазеров (в частности VCSEL-лазеров). Принцип действия оптического стандарта частоты на основе эффекта когерентного пленения населенностей во многом схож с традиционным стандартом частоты с лазерной накачкой. Главным его достоинством является отсутствие необходимости использования СВЧ поля, что позволяет отказаться от СВЧ-резонатора и тем самым резко снизить размеры квантового дискриминатора (до 1 см³). Важно подчеркнуть, что существует настоятельная потребность в повышении метрологических характеристик стандартов частоты данного типа, прежде всего, для службы времени, системы глобального позиционирования объектов с космическим базированием и связи.

В настоящей работе проведен детальный анализ эффективности оптической накачки магнитного подуровня сверхтонкой компоненты основного состояния 5s 2S1/2 (Fg =1,M=0) в атоме рубидия-87 и 6s 2S1/2 (Fg =3,M=0) в атоме цезия-133 при воздействии линейно поляризованными лазерными полями на резонансных переходах линии D2 (ns 2S1/2 \leftrightarrow np 2P3/2): Fg=1 \leftrightarrow Fe=1 и Ff=2 \leftrightarrow Fe=2 в рубидии и Fg=3 \leftrightarrow Fe=3 и Ff=4 \leftrightarrow Fe=4 в цезии. Для этих переходов получены не зависящие от лазерных параметров аналитические асимптотические значения населенностей «темных» магнитных подуровней, не участвующих в лазерно-индуцированных переходах.

Бихроматическая лазерная накачка

На рис. 1 показана схема нижайших уровней оптических переходов в атомах ⁸⁷Rb и ¹³³Cs с их сверхтонкой структурой.

Рис. 1. Сверхтонкая структура уровней оптических переходов в щелочных атомах: (а) атом изотопа ⁸⁷Rb, (б) –¹³³Cs

16 Фундаментальные, теоретические исследования в метрологии

Для эффективности оптической накачки в многоуровневой системе важное значение имеет соотношение вероятностей спонтанных радиационных переходов в «темные» состояния. Как видно из данных для коэффициентов ветвления, приведенных в таблицах 1 и 2, переходы на линии D₂ предпочтительнее, поскольку подуровень F_gM=0 заселяется с большей вероятностью, чем на линии D₁. Таким образом, в качестве источника оптической накачки следует использовать лазерное излучение на переходах между подуровнями сверхтонкой структуры линий D₂ в атомах рубидия и цезия.

Таблица 1

Переходы D ₁		60 <i>b</i>	$_{MM}'(F_{g(f)})$,F _e)	Переходь	а D_2	$60b_{MM'}(F_{g(f)},F_e)$				
$F_e=1$ M	F _g F _f	М			$F_e=1$ M	F _g F _f	М				
		0	±1	±2			0	±1	±2		
0	1 2	0 20	5 15		0	1 2	0 3	25 4			
±1	1 2	5 5	5 15	30	±1	1 2	25 1	25 3	6		
$F_e=2$ M					$F_e=2$ M						
0	1 2	20 0	5 15		0	1 2	20 0	5 15			
±1	1 2	15 15	15 5	10	±1	1 2	15 15	15 5	10		
±2	1 2		30 10	20	±2	1 2		30 10	20		
Таблица											

Коэффициенты ветвления $b_{MM'}(F_{g(f)}, F_e)$ спонтанных переходов 5^{2} Рид зир *FeM'* $\rightarrow 5^{2}$ Sир *FormM* линий *D*1 и *D*2 в атоме рубилия-87

гаолица 2

0 1 1/2,3/2 Г еги $\rightarrow 0$ 51/2 Г $g(t)$ и линии D1 и D2 в атоме цезия.														
Переходы D ₁		4	48 <i>b_{MM}</i> ′($F_{g(f)}, F_e)$	1		Переходы D_2 144 $b_{MM'}(F_{g(f)}, F_e)$							
E - 3	F			h	1		<i>E</i> –2	F	M					
M	F_{f}	0	±1	±2	±3	±4	M^{P_e-3}	F_g F_f	0	±1	±2	±3	±4	
0	3	0	6				0	3	0	54				
	4	16	10				U	4	16	10				
±1	3	6	1	5			⊥1	3	54	9	45			
	4	6	15	15			Ξ1	4	6	15	15			
12	3		5	4	3		10	3		45	36	27		
±Ζ	4		3	12	21		Ξ2	4		3	12	21		
±3	3			3	9	-	±3	3			27	81	-	
	4			1	7	28		4			1	7	28	
$F_e=4$							$F_e=4$		1.0	001 1				
M							M		$1080D_{MM}(F_{g(f)},F_e)$					
0	3	16	6				0	3	400	150				
0	4	0	10				U	4	0	490				
M 0	3 4	16 0	6 10				M' 0	3 4	400 0	150 490				

Коэффициенты ветвления $b_{MM'}(F_{g(f)}, F_e)$ спонтанных переходов $6^2 P_{1/2,2/2} E M' \rightarrow 6^2 S_{1/2} E M$ пиний D₁ и D₂ в этоме церия

Фундаментальные, теоретические исследования в метрологии 17

									IIpc	долж		laomin	цы 2
1	3	10	15	3			1.1	3	250	375	75		
±Ι	4	10	1	9			Ξ1	4	490	49	441		
±2	3		15	12	1		 2	3		375	300	25	
±Ζ	4		9	4	7		<u></u> Ξ2	4		441	196	343	
±3	3 4			21 7	7 9	_ 4	±3	3 4			525 343	175 441	- 19 6
±4	3 4				28 4	- 16	±4	3 4				700 196	- 78 4

Продолжение таблицы 2

Существует два варианта бихроматической накачки, показанных на рис. 2. В первой из них (рис. 2а) накачка осуществляется через общий уровень возбужденного состояния, т.н. Λ -схема переходов. В этой схеме помимо обычных «темных» состояний (обозначенных \overline{g} и \overline{f}) существуют невза-имодействующие с лазерным полем состояния, являющиеся суперпозицией магнитных подуровней g и f. Их появление связано с эффектом когерентного пленения населенности (КПН) [8], что может снизить конечную эффективность накачки.

Рис. 2. Схема переходов в бихроматическом лазерном поле. Сплошные стрелки – индуцированные переходы, пунктирные стрелки – спонтанные переходы. (а) - Λ -схема, \overline{g} , \overline{f} -«темные» состояния, (б) – независимые переходы

Во избежание возможного негативного влияния эффекта КПН целесообразно использовать схему переходов, показанную на рис. 26, где для каждого перехода используются различные возбужденные состояния, таким образом, когерентности между подуровнями g и f не возникает.

Для асимптотических значений населенностей подуровней при одновременной накачке на двух переходах, не имеющих общих уровней, следуя [9],

получим

$$\overline{n}_{F_gM=0} = n_{F_gM=0}^0 + \sum_{M'>0} P_{0M'}(F_g, F_g) n_{F_gM'}^0 + \sum_{M'>0} P_{0M'}(F_g, F_f) n_{F_fM'}^0$$

$$\overline{n}_{F_fM=0} = n_{F_fM=0}^0 + \sum_{M'>0} P_{0M'}(F_f, F_g) n_{F_gM'}^0 + \sum_{M'>0} P_{0M'}(F_f, F_f) n_{F_fM'}^0 ,$$

$$(1)$$

где

$$P_{0M}(F_{f(g)}, F_{g(f)}) = 2b_{01}(F_{f(g)}, F_e)[A^{-1}(F_{g(f)}, F_e)]_{1M}, (2)$$
$$n_{F_g(f)M}^0 \equiv n_{F_g(f)M}(t=0), \ A_{MM'}(F_{g(f)}, F_e) \equiv \delta_{MM'} - b_{MM'}(F_{g(f)}, F_e),$$

 $\delta_{MM'}$ – символ Кронекера, $b_{MM'}(F_{g(f)}, F_e)$ – коэффициент ветвления вероятности радиационного перехода между магнитными подуровнями сверхтонкой структуры $F_eM' \rightarrow F_{g(f)}M$. Ось квантования проекции полного момента совпадает с направлением поляризации лазерных полей и атомного пучка.

Для $F_g=1 \leftrightarrow F_e=1$ и $F_f=2 \leftrightarrow F_e=2$ переходов линии D_2 в атоме ⁸⁷Rb из (1) и (2) следует:

$$\overline{n}_{10} = n_{10}^0 + \frac{46}{25} n_{1\pm 1}^0 + \frac{34}{25} n_{2\pm 1}^0 + \frac{43}{25} n_{2\pm 2}^0,$$

$$\overline{n}_{20} = n_{20}^0 + \frac{4}{25} n_{1\pm 1}^0 + \frac{16}{25} n_{2\pm 1}^0 + \frac{7}{25} n_{2\pm 2}^0.$$
(3)

В случае равновесных начальных населенностей

$$\bar{n}_{10} = 0.74, \quad \bar{n}_{20} = 0.26.$$
 (4)

При одновременном воздействии двух лазерных полей на переходах $F_g = 3 \leftrightarrow F_e = 3$ и $F_f = 4 \leftrightarrow F_e = 4$ линии D_2 в атоме ¹³³Cs «темными» подуровнями являются $F_g = 3M=0$ и $F_f = 4M=0$. Асимптотические населенности для них из (1) и (2) имеют сравнительно громоздкий вид, приведенный в [9]. Для равных начальных заселенностей

$$\overline{n}_{30} = \frac{482907}{698782} \approx 0.6911, \quad \overline{n}_{40} = \frac{215875}{698782} \approx 0.3089.$$
 (5)

Эффективность накачки подуровня Fg = 3M = 0 достигает значения 11.05.

Многоступенчатая схема накачки

Из (4) и (5) следует, что в результате накачки образуется смешанное состояние, являющееся некогерентной суммой подуровней часового перехода. Для получения чистого состояния $F_g M=0$ при использовании метода Рэмси требуется очистить верхний подуровень $F_f M=0$. Добиться этого без потери рабочих атомов в пучке можно, применяя повторную накачку на переходе $F_f \leftrightarrow F_e = F_f$ в поле, поляризованном в направлении под углом β относительно

оси квантования (рисунок 3).

Рис. 3. Две системы координат с осью квантования z и с направлением вектора поляризации лазерного поля z' (повернута на угол β вокруг оси у)

В этом случае асимптотические населенности для атома рубидия имеют вид

$$\overline{n}_{10}'(\beta) = n_{10}'^{0}(\beta) + \frac{4}{7}n_{2\pm1}'^{0}(\beta) + \frac{1}{7}n_{2\pm2}'^{0}(\beta),$$

$$\overline{n}_{1\pm1}'(\beta) = n_{1\pm1}'^{0}(\beta) + \frac{3}{7}n_{2\pm1}'^{0}(\beta) + \frac{6}{7}n_{2\pm2}'^{0}(\beta),$$

$$\overline{n}_{20}'(\beta) = n_{20}'^{0}(\beta) + \frac{4}{7}n_{2\pm1}'^{0}(\beta) + \frac{1}{7}n_{2\pm2}'^{0}(\beta),$$
(6)

где начальные значения населенностей подуровней с осью квантования z' в повернутой системе координат:

$$n_{FM}^{\prime 0}(\beta) = [d_{0M}^F(\beta)]^2 \bar{n}_{F0}$$
⁽⁷⁾

определяются значениями (4) и выражаются через D-функции Вигнера $d_{M'M}^F(\beta)$ (см., например, [10]).

Аналогичные выражения для соответствующего перехода в атоме цезия приведены в [9].

Из выражения (6) следует, что в результате накачки существенная доля атомов переходит из состояний $F_f M$ в $F_g M$. Последующее применение накачки (3) для рубидия с начальными значениями населенностей при обратном повороте системы:

$$n_{FM}^{0} = \sum_{M'} [d_{M'M}^{F}(-\beta)]^{2} \,\overline{n}_{FM'}^{\prime}(\beta), \qquad (8)$$

ведет, очевидно, к дальнейшему накоплению атомов в F_g M=0 состоянии.

Например, для последовательности переходов при чередовании π и σ поляризации поля (β =90°) на переходе $F_f \leftrightarrow F_e = F_f$ повторное применение (3) с

$$\overline{\overline{n}}_{10} = \overline{n}_{10} + \frac{9657}{11200} \overline{n}_{20} \approx \overline{n}_{10} + 0.86 \overline{n}_{20},$$
$$\overline{\overline{n}}_{20} = \frac{1543}{11200} \overline{n}_{20} \approx 0.14 \overline{n}_{20},$$
(9)

учетом (6-8) дает:

где значения \overline{n}_{10} и \overline{n}_{20} определены в (4), что дает в итоге

$$\bar{n}_{10} \approx 0.934, \quad \bar{n}_{20} \approx 0.066.$$
 (10)

Аналогичная последовательность переходов в атоме цезия дает следующие значения асимптотических населенностей подуровней $F_g=3$ M=0 и $F_f=4$ M=0 после третьей ступени

$$\overline{\bar{n}}_{30} \approx \overline{n}_{30} + 0.785 \,\overline{n}_{40}, \quad \overline{\bar{n}}_{40} \approx 0.215 \,\overline{n}_{40}, \tag{11}$$

где \overline{n}_{30} и \overline{n}_{40} определены в (5).

Кратность повторения данной процедуры, при которой населенность $F_f M=0$ уменьшается по геометрической прогрессии, определяется практической целесообразностью и может быть завершена очисткой этого подуровня на циклическом переходе $F_f \leftrightarrow F_e = F_f + 1$ линии D_2 . В результате оставшиеся атомы пучка будут находиться в чистом состоянии $F_g M=0$.

Похожая схема применялась в экспериментальных исследованиях на цезиевом фонтане [11], где градиент поляризации на $F_f=4\leftrightarrow F_e=4$ переходе для параболической траектории атомов создавался за счет сложения поля бегущей волны с полем созданной ею же двумерной оптической решетки. Это обеспечило дополнительное охлаждение атомов по сизифому механизму, компенсируя их нагрев в процессе накачки.

Заключение

В данной работе исследована эффективность лазерной накачки в атомах рубидия и цезия для различных схем и последовательностей переходов, представляющих интерес для повышения метрологических характеристик в современных стандартах времени и частоты.

В частности, результаты теоретических исследований схемы бихроматической накачки линейно поляризованными лазерными полями ансамбля атомов в стандартах частоты фонтанного типа позволяют сделать следующие основные выводы:

существует возможность эффективной перекачки населенности верхнего подуровня $F_f M=0$ «часового» перехода на подуровень Fg M=0 за счет модуляции поляризации поля накачки $F_f \leftrightarrow F_e = F_f$,

применение многоступенчатой накачки с чередующейся поляризацией лазерного поля дает экспоненциальное уменьшение населенности верхнего подуровня на каждой ступени.

Результаты, представленные в настоящей работе, получены в предположении малости влияния зеемановских когерентностей на значения асимптотических населенностей при интенсивностях полей порядка 1 мВт/см². Для выяснения реальной степени влияния зеемановских когерентностей требуется уточнение используемой кинетической модели.

Литература

- 1. Wynands R. and Weyers S. // Metrologia, 42, S64 (2005).
- 2. Домнин Ю.С., Барышев В.Н., Бойко А.И. и др.// Измер. техника, 2012, № 10, с. 13.
- 3. Guena J. // IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 59, 391 (2012).
- 4. Levi F., Calosso C., Calonico D. et al. // IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 57, 600 (2010).
- 5. Li R., Gibble K. and Szymaniec K // Metrologia, 48, 283 (2011).
- 6. Bauch A // Metrologia, 42, S43 (2005).
- 7. Риле Ф. Стандарты частоты. Принципы и приложения. М.: Физматлит, 2009.
- 8. Arimondo E. in Progress in Optics / ed. by E. Wolf (Elsevier, Amsterdam), 257, 1996.
- 9. Магунов А.И., Пальчиков В.Г. // ЖЭТФ, 2014, 145, 787.
- 10. Варшалович Д.А., Москалев А.Н., Херсонский В.К., Квантовая теория углового момента. Л.: Наука, 1975.
- 11. Di Domenico G., Devenoges L., Dumas C. and Thomann P // Phys. Rev. A, 82, 053417 (2010).