УДК 539.125.164:539.173.84

МОДЕЛИРУЮЩИЕ ОПОРНЫЕ ПОЛЯ НЕЙТРОНОВ В ГОСУДАРСТВЕННОЙ СИСТЕМЕ ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ НА ЯДЕРНО-ФИЗИЧЕСКИХ УСТАНОВКАХ РФ

В.Д. Севастьянов

ФГУП «ВНИИФТРИ», Менделеево, Московская обл. sevast@vniiftri.ru

Описан принцип создания моделирующих полей (МОП) нейтронов на ядерных и термоядерных реакторах. Указано место МОП нейтронов в государственной системе обеспечения единства измерений на ядерно-физических установках РФ. Приведен ряд основных нейтронных характеристик созданных одиннадцати типов МОП нейтронов на ядерных реакторах и нейтронных генераторах

Ключевые слова: опорные нейтронные поля, ядерно-физическая установка, эталонные источники нейтронов, единство измерений

Моделирующие опорные поля нейтронов исследовательских на ядерных реакторах и нейтронных генераторах нашли широкое применение для решения важных научнотехнических задач. Таких, как: исследование радиационной стойкости изделий; исследование радиационного воздействия нейтронного излучения на объекты военного и гражданского назначения; исследование физики деления ядер; градуировка систем управления и защиты ядерных реакторов и измерения выгорания ядерного топлива в твэлах; наработка радионуклидов, применяемых в науке и технике; лечение онкобольных и др.

Энергия нейтронов, излучаемых ядерными реакторами, нейтронными генераторами, атомными и нейтронными боеприпасами при их взрыве находится преимущественно в диапазоне энергий 10^{-10} - 18 МэВ. Степень радиационного воз-

действия нейтронного излучения на исследуемые объекты и аппаратуру определяется не только флюенсом нейтронов, которым они облучены, но и их энергетическим спектром.

В РФ метрологическое обеспечение на ядерно-физических установках (ЯФУ) базируется на Государственном первичном специальном эталоне (ГПСЭ) единиц плотности потока и флюенса нейтронов ГЭТ 51-80 ФГУП ВНИИФТРИ [1]. осуществляется, преимуще-Оно ственно, с применением эталонных опорных и опорных моделирующих полей нейтронов. Передача размера единиц от ГПСЭ [1,2] к эталонным источникам на ЯФУ осуществляется в соответствии с государственной поверочной схемой (рис.1) либо путем прямой передачи, либо косвенным методом. Моделирующие опорные поля (МОП), так же как и опорные поля, являются составной частью эталонных источников нейтронов, создаваемых на ЯФУ [2-4].

Опорное поле нейтронов на ЯФУ представляет собой фиксированный объем нейтронного поля конкретной установки, используемое в качестве меры энергетического состава нейтронного излучения для: воспроизведения размера единиц плотности потока и флюенса нейтронов; аттестации (поверки) других полей ядерных реакторов, исследований и поверки радиометрической и спектрометричекой аппаратуры.

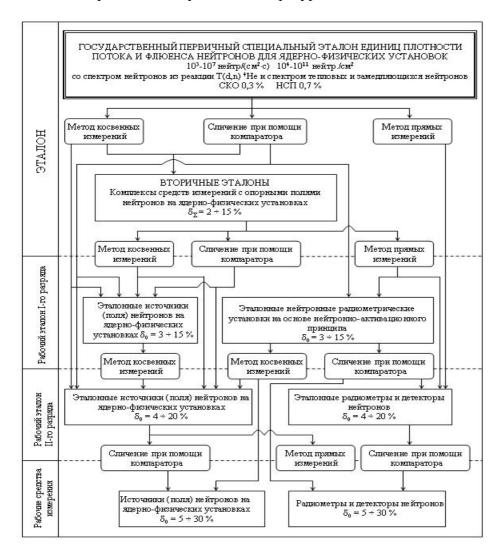


Рис. 1. Государственная поверочная схема для средств измерений плотности потока и флюенса нейтронов на ядерно-физических установках

Моделирующее опорное поле являясь, так же как и опорное поле, мерой энергетического состава ней-

тронного излучения при выполнении указанных выше работ, должно быть, кроме того, смоделировано по

энергетическому спектру нейтронов в соответствии с требованиями конкретных решаемых практических задач (например, испытаний радиационной стойкости изделий радиоэлектронной техники и др.) [5, 6]. Создание МОП является сложной научно-технической задачей [7-8]. Они создаются либо на специальных моделирующих исследовательских установках, либо формируются на имеющихся на заинтересованном предприятии ЯФУ с применением специальных трансформаторов нейтронного излучения, таким образом, чтобы его нейтронные характеристики были бы оптимальными для решения научно-технических задач. Прямая передача размера единиц от ГПСЭ к создаваемым МОП на ЯФУ в большинстве практических случаев невозможна из-за: большого разнообразия энергетических спектров на ЯФУ: ограниченного количества в составе ГПСЭ источников нейтронов: (только источники тепловых и моноэнергетических нейтронов с энергией 14 МэВ); больших различий в интенсивности полей нейтронов эталона и аттестуемых полей ЯФУ (отличие на 5-15 порядков); высоких требований к точности нейтронных измерений на ЯФУ при решении ряда научно-технических проблем (близкой к максимально достижимой на современном уровне развития науки и техники).

Поэтому потребовалось разработать комплекс средств и методов измерений для согласованного с ГПСЭ воспроизведения размера единиц плотности потока (и флюен-

- са) нейтронов непосредственно в МОП на ЯФУ. Согласованное с ГПСЭ воспроизведение размера единиц в МОП означает:
- при аттестации различных МОП должны использоваться преимущественно одни и те же стандартизированные активационные и делительные детекторы, входящие в состав специализированного набора детекторов ГПСЭ, а также и другие типы измерительных средств (например, спектрометр нейтронов со стильбеном);
- выполнение измерений в МОП при их аттестации должно осуществляться по единым методикам, принятым для ГПСЭ;
- восстановление энергетических спектров нейтронов в МОП должно осуществляться стандартизированными программами (согласованными с ФГУП "ВНИИФТРИ");
- расчет активности в детекторах (облученных нейтронами в МОП), а также восстановление спектров нейтронов должны проводиться с использованием стандартизированных ядерно-физических констант (сечений ядерных реакций, периодов полураспада, эмиссии излучений и др.);
- измерение наведенной активности в детекторах нейтронов (облученных в МОП) должно проводиться преимущественно на радиометрическом комплексе ГПСЭ, либо на специальных радиометрических установках, аттестованных ФГУП "ВНИИФТРИ";
- на завершающем этапе аттестации МОП или эталонного источ-

ника нейтронов должно проводиться его сличение с ГПСЭ.

Кроме того, энергетический спектр нейтронов должен быть представлен потребителю в доступной аналитической форме желательно в виде суперпозиции ряда компонент, чтобы можно было экспрессно: установить степень радиационного воздействия нейтронов каждого компонента на исследуемые объекты в МОП; сопоставить характеристики создаваемых МОП и соответствующих полей-аналогов; систематизировать данные о характеристиках созданной системы МОП; обеспечить моделирование отдельных компонент спектра с применением спетрансформаторов циальных тронного излучения.

Таким образом, создаваемая система МОП в составе эталонных источников на ЯФУ в целом должна способствовать повышению уровня метрологического обслуживания нейтронных измерений при решении ряда важных народно-хозяйственных задач в РФ.

Для измерений характеристик полей нейтронов в моделирующих опорных полях нейтронов ЯФУ в РФ использовали нейтронно-активационный метод, который заключается: в облучении в исследуемом поле нейтронов набора активационных и делительных детекторов нейтронов, в измерении наведенной в детекторах активности и приведении ее на конец времени их облучения нейтронами, расчете скоростей ядерных реакций в каждом из детекторов нейтронов, расчете характеристик полей нейтронов [энергетического спектра, плотности потока (флюенса) и др.].

Скорость реакции активации (Q^i_a) и деления (Q^i_F) в детекторах нейтронов рассчитывали из соотношений:

для активационного

$$Q_a^i = A_t^i / \left[N_{\mathcal{A}}^i \left(1 - e^{-\lambda^i t_0^i} \right) e^{-\lambda^i t_B} \right], \qquad (1)$$

для делительного

$$Q_f^i = N^i / (\varepsilon_F N_g^i t_0^i), \qquad (2)$$

где: A_t^i - активность i-го детектора на момент (t) времени его измерения, $N_{\mathcal{R}}^i$ - число ядер нуклидамишени в i-ом детекторе, t_0^i - эффективное время облучения i-го детектора нейтронами, λ_i - константа распада для продукта активации в i-ом детекторе, $t_{\mathcal{G}}$ - время выдержки детектора с момента конца облучения его нейтронами до момента времени измерения его активности, N_i - число треков в трековом регистраторе i-го делительного детектора, ε_F - чувствительность регистрации актов деления трековым регистратором.

Нейтронные характеристики МОП (энергетический спектр, плотность потока, флюенс, средняя энергия нейтронов в спектре и др.) определяли из интегрального уравнения Фредгольма первого рода с дискретным заданием параметра i, в форме системы интегральных соотношений, связывающих скорость i-ой ядерной реакции (Q_i) в активационном детекторе (при его облучении нейтронами), отнормированную на одно ядро нуклида-мишени детекто-

ра, дифференциальную плотность потока нейтронов в МОП $[\phi(E)]$ и сечение i-ой ядерной реакции $\sigma_i(E)$:

$$Q_i = \int_0^\infty \varphi(E)\sigma_i(E)dE, \qquad (3)$$

где: E - энергия нейтронов.

Точное решение приведенного интегрального уравнения Фредгольма невозможно из-за того, что каждое сечение ядерной реакции (ядро подинтегральной функции) не определено во всем диапазоне энергии восстанавливаемого спектра МОП. Поэтому для обеспечения корректного решения указанного уравнения необходимо было наложить дополнительные ограничения. В частности, исходя из известных физических соображений формировали априорный спектр нейтронов, в качестве первичной модели спектра нейтронов в исследуемом МОП. При дальнейшем расчете спектра, априорный спектр деформировался с учетом измеренных скоростей ядерных реакций в используемых при измерениях в МОП детекторах.

Из изложенного выше следует, что полная погрешность определения дифференциального спектра нейтронов в МОП нейтронно-активационным методом определяется следующими основными факторами:

- погрешностью измерения скоростей ядерных реакций (Q_i) , имеющих место в активационных и делительных детекторах при их облучении нейтронами в МОП;
- количеством и качеством ядерно-физических характеристик детекторов, которые использовались

для измерения спектра;

- погрешностью сечений ядерных реакций $\sigma_i(E)$ для нуклидовмишений в детекторах нейтронов;
- физической обоснованностью формирования априорного спектра нейтронов при восстановлении спектра в МОП.

Оптимизация первых двух компонент погрешности определения спектра нейтронов в МОП связана с применением при измерениях в нем оптимального состава активационных и делительных детекторов нейтронов.

Четвертый и основной компонент систематической погрешности определения спектра нейтронов в МОП обусловлен методикой формирования априорного спектра нейтронов, реализованной в конкретной программе восстановления спектра нейтронов, используемой при определении нейтронных характеристик поля.

С целью обеспечения оптимизации процесса измерения нейтронных характеристик в МОП на ЯФУ, которая бы обеспечила требуемую практикой точность измерений при каждого нейтронного аттестации поля ЯФУ и минимальные финансовые затраты, был разработан специализированный набор нейтронноактивационных и делительных детекторов при ГПСЭ. Специализированный набор детекторов для измерений в полях МОП на ядерных реакторах формировали на базе стандартизованных детекторов АКН, АКН-Т и ДКН [9, 10], серийно выпускаемых в РФ с 1977 г. В спе-

циализированный набор включены преимущественно детекторы, в которых имеют место (при облучении нейтронами) ядерные реакции перкатегории [11-13]. Сечения ядерных реакций этой категории измерены с максимально возможной точностью в мировой практике нейтронных измерений. В состав специализированного набора включено большое количество не только активационных, но и делительных детекторов нейтронов из-за присущих только им ряда особых свойств. Необходимо также отметить, что к настоящему времени детально отработаны прецизионные методы аттестации делительных детекторов по числу ядер нуклида-мишени (~ 1-3 %) в них, а также по определению в них примесных мешающих нуклидов [9, 14-20]. Трековые делительные детекторы позволяют также оптимальным образом осуществлять их облучение нейтронами и последующую обработку получаемой с них экспериментальной информации.

Регистрация нейтронов делительным детектором осуществляется следующим образом. При облучении детектора нейтронами в слое делящегося вещества фольги детектора идет реакция деления (n, f). Осколки деления, вылетающие из слоя делящегося вещества, регистрируются трековым регистратором. После регламентированной обработки треко-

вых регистраторов в фтористоводородной кислоте осуществляют счет треков в них на оптическом микроскопе при увеличении в 50 - 1000 раз. Треки от осколков деления в слюде-мусковит (трековый стратор) имеют характерную форму ромба. Трековый регистратор из слюды-мусковит не чувствителен к сопутствующим излучениям (α-, β-, у-), имеет малый критический угол регистрации осколков (4°30') и, следовательно, высокую чувствительность регистрации осколков деления ~90%. Фоновые треки в слюде, обусловленные спонтанным делением ядер урана, содержащегося в качестве примеси в самой слюде, разделяются от рабочих треков путем предварительного отжига и протравливания слюды в фтористоводородной кислоте.

В состав специализированного набора детекторов нейтронов включены и композиционные делительные детекторы с нуклидами 235 U и 239 Pu. Композиционный делительный детектор нейтронов (состоящий из сферического полого экрана из обогащенного по нуклиду 10 B бора с толщиной стенки 1г/см^2) и помещенного внутри его делительного детектора с нуклидом 235 U нечувствителен к нейтронам с энергией менее 500 эВ, за счет их поглощения по реакции 10 B(n, α) в материале экрана.

Таблица 1 Ядерно-физические характеристики ряда активационных и делительных детекторов специализированного набора ГПСЭ

№ п/п	Ядерная реак- ция	Энер-	Сечение тепло-	Эффек тив-	Содержание нуклидов-	Период полу- распада про-	Энергия ү-излучения,	Измерение энергетиче- ского спектра			Измере- ние
		основ- ного резо- нанса, еВ	выми нейтро- нами, барн	ный порог реак- ции, МэВ	мишени в е.с.и, % (по- грешность)	дукта актива- ции (погреш- ность, %)	МэВ (эмис- сия фотонов, %)	В по- лях быст- рых ней- тронов	В за- мед- ляю- щих средах	В центре АЗ быстрых реакто- ров	флюенса тепло- вых нейтро- нов
1	2	3	4	5	6	7	8	9	10	11	12
1*	²³⁵ U(n,f)		584,0 (1.3)		счёт треков в слюде			+	+	+	+
2°	¹⁷⁶ Lu(n,γ) ¹⁷⁷ Lu	0,142	1953 (0,3)		2,59 (2)	6,71 сут. (0,15)	0,208 (11,0)		+		
3 *	²³⁹ Pu(n,f)	0,297	744,0 (0,4)		счёт треков в слюде			+	+	+	+
4°	¹⁹⁷ Au(n,γ) ¹⁹⁸ Au	4,906	99,2 (0,1)		100	2,695 сут. (0,1)	0,412 (95,6)	+	+	+	+
5°	139La(n,γ)140La	72,17	8,95 (0,5)		99,91 (1)	1,678 сут (0,1)	1,596 (96,0)		+		
6°	⁵⁹ Co(n,γ) ⁶⁰ Co	132	37,2 (0,2)		100	5,271 лет (0,1)	1,173 (99,9) 1,133 (100,0)		+		
7°	55 Mn(n, γ) 56 Mn	336	13,3 (1,5)		100	2,5785 час (0,1)	0,847 (100) 1,812 (27,5)		+		
8°	⁶³ Cu(n,γ) ⁶⁴ Cu	579	4,51 (0,5)		69,17 (2)	12,701 час (0,1)	0,511 (34,3)		+		+
9°	²³ Na(n,γ) ²⁴ Na	2850	0,531 (0,9)		100	14,960 час (0,1)	1,369 (100) 2,754 (99,9)		+		
10	¹⁵¹ Eu(n,γ) ^{152m} Eu	0,461	3900 ± 200		47,77 (1)	9,32 час	0,9641 (11,3), 0,8414 (14,6) 0,1218 (7,27)				
10*	²³⁸ Pu(n,f)			0,36	счёт треков в слюде			+		+	
11**	²³⁷ Np(n,f)			0,55	счёт треков в слюде		+	+	+		
12°	²⁴⁰ Pu(n,f)			0,65				+			
13°	¹⁰³ Rh(n,n') ^{103m} Rh			0,70		100 56,12 мин (0,1) 0,0201 (7,0)		+	+	+	
14	²⁴¹ Am(n,f)			0,80	счёт треков в слюде		+				
15	²³⁶ U(n,f)			1,00		счёт треков в слюде		+	+		
16	¹¹⁵ In(n,n') ^{115m} In			1,20	95,7 (2)	4,486 час (0,2)	0,336 (45,9)	+	+	+	
17	¹⁹⁹ Hg(n,n') ^{199m} Hg			1,40	16,84 (11)	42,6 мин (0,9)	0,158 (52,3) 0,374 (12,3)	+	+	+	
18**	²³⁸ U(n,f)			1,50	99,2745 (15)	счёт треков в слюде		+	+		
19	⁵⁸ Ni(n,p) ⁵⁸ Co			2,50	68,27 (1)	70,78 сут. (0,2)	0,811 (99,4) 0,864 (0,70)	+	+		
20	³² S(n,p) ³² P			3,00	95,02 (9)	14,29 сут. (0,4)	1,711(Б)(100)	+	+		
21	54Fe(n,p)54Mn			3,00	5,84	312,2 сут. (0,1)	0,835 (100)	+	+		
22	²⁰⁴ Pb(n,n') ^{204m} Pb			4,00	1,40	1,115 час (0,3)	0,375 (93,0) 0,900 (189,0)	+	+		
23	²⁷ Al(n,p) ²⁷ Mg			4,00	100	9,462 мин (0,2)	1,013 (30) 0,844 (70)	+	+		
24	⁵⁶ Fe(n,p) ⁵⁶ Mn			6,20	91,72 (30)	2,5785 час (0,1)	0,847 (100)	+	+	+	
25	²⁴ Mg(n,p) ²⁴ Na			7,00	78,99 (3)	14,960 час (0,1)	1,369 (100)	+	+		
26	²⁷ Al(n,α) ²⁴ Na			7,20	100	14,960 час (0,1)	2,754 (99,9) 2,754 (99,9)	+	+	+	
27	93Nb(n,2n)92mNb			10,5	100	10,13 сут (0,3)	0,934 (99,0)	+	+	+	
28	63Cu(n,2n)62Cu			12,8	69,17 (2)	9,74 мин	0,511 (195)	+			
29	¹⁹ F(n,2n) ¹⁸ F			13,0	100	109,77 мин (0,1)	0,511 (193,4)	+	+		

Примечание:

- * детекторы облучают также в борных экранах с толщиной стенки по $^{10}{\rm B}$ $\sim 1~{\rm r/cm}^2$
- ** детекторы облучают также в борных экранах с толщиной стенки по $^{10}{\rm B}$ $\sim 0.4~{\rm \Gamma/cm^2}$
- $^{\circ}$ детекторы облучают также в экранах из кадмия с толщиной стенки $1.00~\mathrm{mm}$

Исходя из сложненных выше физических и технических соображений был окончательно сформирован состав активационных и делительных детекторов нейтронов специализированного набора детекторов, который и был использован для

исследований нейтрорнных характеристик в МОП на ЯФУ (см. табл. 1). В колонках 3-8 табл. 1 приведены ядерно-физические характеристики активационных и делительных детекторов специализированного набора.

Следует отметить, что применение всех детекторов специализированного набора для исследований каждого конкретного МОП нецелесообразно, так как применение ряда из них не приведет к уточнению характеристик поля из-за их неинформативности. Так, применение детекторов тепловых нейтронов в центре металлической активности быстрых реакторов не имеет смысла из-за отсутствия тепловых нейтронов в центре зоны. Поэтому при подготовке к аттестации каждого конкретного МОП формировали оптимальный состав набора детекторов, исходя из предварительной информации о характеристиках аттестуемого поля нейтронов, ядерного реактора, материала конструкционных элементов реактора, ответственного за формирование спектра нейтронов в МОП; требований к точности измерений нейтронных характеристик в МОП. Однако основным свойством сформированного «оптимального» набора детекторов в каждом конкретном случае его применения на ЯФУ должно быть то, чтобы детекторы набора имели чувствительность к нейтронам во всем энергетическом диапазоне измеряемого спектра.

Характеристики полей нейтронов в МОП на ЯФУ определяли по новой оригинальной методике, которая излагается ниже. Априорные спектры нейтронов формировали в аналитической форме в виде суперпозиции физически обоснованных хорошо изученных в мировой практике типов спектров: спектра мгно-

нейтронов деления ядер (спектров Ватта или Максвелла); испарительных спектров (спектров Вайскопфа); спектра замедления (спектра Ферми); Максвелловского спектра тепловых нейтронов; спектра моноэнергетических нейтронов в форме Гаусса; спектра нейрассчитанного методом тронов, Монте-Карло. Действительно, мгновенные нейтроны деления ядер генерируются в активной зоне реактора в результате цепной реакции деления ядер ²³⁵U. Нейтроны же испарительных спектров Вайскопфа генерируются в резултате неупругого взаимодействия нейтронов (по реакциям n, n', n, 2n и n, f n) с ядрами материала констркуционных элементов как самих ЯФУ, так и материала окружающих их предметов (например, стенды, на которых установлены ЯФУ, стены и потолок экспериментальных залов реакторов и др.) Нейтроны спектра замедления Ферми и Максвелловского спектра тепловых нейтронов образуются в результате многократного упругого рассеяния быстрых нейтронов на ядрах элементов, входящих в состав материала отражателей активной зоны, а также замедляющих сред реакторов. Моноэнергетическские нейтроны с энергией 2,5 и 14 МэВ, генерируемые ускоренными пучками дейтронов в дейтериевых и тритиевых мишенях по реакциям ${}^{2}H+{}^{3}H={}^{4}He+n$ и $^{2}H+^{2}H=^{3}He+n$ в мишенных блоках генераторов, в настоящеё работе представлены в форме известного распределения Гаусса со стандартным отклонением (энергетическим разрешением) $\sigma_{\rm r}$.

Исходя из изложенного выше, поиск спектра F(E) в исследуемой точке поля нейтронов ЯФУ осуществлялся в виде аналитического выражения:

$$F(E) = A_{f}(2 \alpha_{f}^{3/2}/\sqrt{\pi}) \sqrt{E} \exp(-\alpha_{f} E)$$

$$+ \sum_{i=1}^{k} A_{Bi} (\alpha_{Bi})^{2} E \exp(-\alpha_{Bi} E) + A_{M}$$

$$= 1$$

$$\alpha_{M}^{2} E \exp(-\alpha_{M} E) + A_{\Phi} (1/E^{\alpha\Phi}) \left[1 + (10^{7}/E)^{7}\right]^{-1}$$

$$= 1$$

$$[1 + (E/0,2)^{2}]^{-1} + \sum_{i=1}^{l} A_{\Gamma} 1/(\sigma_{\Gamma i}\sqrt{2\pi})^{-1}$$

где $\alpha_{\rm f}$, $\alpha_{\rm B}$, $\alpha_{\rm M}$ exp[-($E_{\Gamma i}$ - $\alpha_{\Gamma i}$) 2 /2 $\sigma_{\rm ri}$, $\alpha_{\rm \phi}$ и $\alpha_{\rm \Gamma}$ – есть параметры, а $A_{\rm F}$, $A_{\rm B}$, $A_{\rm M}$, $A_{\rm \phi}$ и $A_{\rm \Gamma}$ – вклады указанных выше парциальных спектров в восстанавливаемый спектр, рассчитываемые из условия:

$$\int_{0}^{\infty} \varphi(E) dE = 1 ,$$

где E, МэВ - энергия нейтронов.

Представление спектра нейтронов в форме (4) позволяет существенно уменьшить систематическую погрешность восстановления спектра нейтронов на ЯФУ; сравнить спектры различных ЯФУ по вкладу отдельных парциальных спектров и по средней энергии нейтронов в спектрах и т.д. Указанное представление спектров позволяет также более корректно оценить радиационное воздействие отдельных компонент спектра на исследуемые сы моделирования отдельных

понент спектра на исследуемые объекты, оперативно решать вопросы моделирования отдельных компонент в спектрах нейтронов при создании моделирующих опорных полей, необходимых для оптимального решения важных научно-технических задач.

Изложенный метод расчёта спектра в течение последних лет постоянно совершенствовался, чтобы обеспечить возможность восстановления спектра в полях нейтронов не только ядерных, но и термоядерных спектров. Он реализован и стандартизован в вычислительной программе КАСКАД [21-25].

Ниже на рис.2 в качестве иллюстации представлен дифференциальный энергетический спектр нейтронов в экспериментальном канале реактора ИР-50, восстановленный по программе КАСКАД. На том же рисунке представлены также отдельные компоненты этого спектра.

При восстановлении спектра нейтронов МОП по программе КАСКАД использовали стандартные справочные данные работ [26-28]. Всего в библиотеке программы КАСКАД имеется 99 дозиметрических ядерных реакций.

Для анализа согласуемости и оценки корректности системы, использованных в работе наиболее изученных в мировой практике нейтронных измерений, интегральных сечений ядерных реакций в полях мгновенных нейтронов деления ядер ²³⁵U тепловыми нейтронами и спонтанного деления ядер ²⁵²Cf [29], автор работы использовал 3-

компонентное представление спектра мгновенных нейтронов деления

ядер 235 U и 252 Cf [30,31] и расчетную программу восстановления спектра

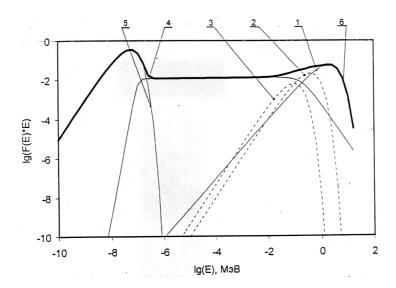


Рис. 2. Дифференциальный энергетический спектр нейтронов в канале ВЭК-4 реактора $\text{ИР-50}\ (6)$

1- спектр нейтронов деления 235 U, 2,3- спектры неупругого рассеяния нейтронов, 4- спектр замедления в форме Ферми, 5- спектр тепловых максвелловских нейтронов

нейтронов КАСКАД. $F(E) = A_{\rm l}\alpha_{\rm Bl}^2 E e^{-\alpha_{\rm Bl}E} + A_{\rm 2}\alpha_{\rm B2}^2 e^{-\alpha_{\rm B2}E} \\ + A_{\rm 3}\alpha_{\rm B3}^2 E e^{-\alpha_{\rm B3}E}$, (5)

где A_i — вклад *i*-го парциального спектра в восстанавливаемый спектр нейтронов; α_{Ri} – константа iго испарительного спектра Вайскопфа, $\alpha_{B1} = 0.69$ для нейтронов, вылетающих в момент деления ядра (предположительно симметричное деление), $\alpha_{B2} = 0.97$ для нейтронов, вылетающих после момента деления сильно возбужденных осколков деления (предположительно асимметричное деление), =5,00 для нейтронов, вылетающих из возбужденного делящегося ядра еще до момента его деления. Средняя энергия нейтронов в указанных парциальных испарительных спектрах составляет соответственно 2,9; 2,0 и 0,4 МэВ.

В процессе восстановления спектров нейтронов постоянно осуществлялось сравнение измеренных интегральных сечений ядерных реакций, имеющих место в активационных детекторах при облучении их нейтронами (сечений, усредненных по восстановленному спектру нейтронов), с теми же сечениями, рассчитанными с использованием дифференциальных сечений из библиотеки программы и восстановленного спектра нейтронов.

Чтобы обеспечить оптимальное согласование (оценку) имею-

щейся в научной литературе системы интегральных сечений дозиметрических ядерных реакций нейтронов при восстановлении спектров указанных выше источников деления, в работе проведено не только сравнение измеренных интегральных сечений ядерных реакций с рассчитанными с использованием дифференциальных сечений из библиотеки программы КАСКАД, но и их сопоставление с известными опубранее эксперименликованными тальными данными [32-34].

Из проведённого анализа был сделан вывод, что значения оцененных экспериментальных и рассчитанных сечений большинства наиболее используемых в мировой практике нейтронных измерений дозиметрических ядерных реакций отклоняются от оцененных автором статьи значений преимущественно не более чем на 2-4 %, что свидетельствует о прецизионном уровне их измерений, корректности оценок сечений ядерных реакций и о возможности их использования при спектров восстановлении МОП нейтронов.

В табл.2 в качестве примера приведены краткие нейтронные характеристики некоторых типов созданной системы МОП на ЯФУ [35, 36]. Все спектры МОП этой системы разбиты на 11 групп. В первой группе приведены характеристики спектров со средней энергией нейтронов ~2 МэВ, принятых во всем мире в качестве стандартных. Во второй группе приведены спектры быстрых импульсных реакторов с металличе-

ской активной зоной из высокообогащенного по изотопу ²³⁵U урана средней энергией (90-95%)co нейтронов в спектре 0,6-1,7 МэВ. Они используются преимущественно для целей ядерно-оружейного комплекса. Автор работы рекомендовал использовать их также в качестве стандартных полей, так как стандартные и эти спектры восстанавливаются с применением одних и тех же физически обоснованных спектров [31]. В третьей группе представлены спектры «вторичных» стандартных полей нейтронов, широко используемых в мировой практике нейтронных измерений для целей корректировки дозиметрических сечений ядерных реакций. В четвертой группе представлены спектры нейтронов «утечки» из активных зон импульсных быстрых реакторов. Их применяют для верификации расчетных программ определения спектров нейтронов вне активной зоны реакторов. В пятом разделе таблицы приведены характеристики полей нейтронов внутри или снаружи специальных замедляющих сборок. Они широко используются для оценки радиационного воздействия на объвоенного и гражданского назначения, градуировки и поверки нейтронной спектрометической радиометрической аппаратуры. шестом разделе приведены спектры нейтронов на различных расстояниях от центра активной зоны быстрых реакторов. Их применение разнообразно. Они, в частности, могут использоваться для оценки поражения объектов гражданского или военно-

го назначения нейтронным излучением «тактических» атомных и

нейтронных боеприпасов.

Таблица 2 Краткие результаты восстановления спектров полей нейтронов Я Φ У

		Флюенс (плотность потока ней-	Константы парциальных спектров					
$N_{\underline{0}}$	Источник нейтронов, тип	тронов*), см ⁻² ; средняя энергия нейтронов, МэВ; среднеквадра-	(вклад в результирующий спектр, %)					
п/п	ядерно-физической уста- новки	тичное откло-нение, %; число ядерных реакций при расчете	Деления	Вайскопфа	Максвелла	Ферми	Faycca *M-K	
	повки	ядерных реакции при расчете спектра	$\alpha_f^i(A_f^i)$	$\alpha_{Bi}(A_{Bi})$	$\alpha_M(A_M)$ $\times 10^7$	$\alpha_{\phi}(A_{\phi})$	$\alpha_{\Gamma}(A_{\Gamma})$ *M-K(X)	
1	2	3	4	5	6	7	8	
		1. Спектры мгновенных	нейтронов делен	ния ядер				
				0.69 (27.88)				
1	Источник спонт. дел. ядер ²⁵² Сf (США)	1.667·10 ¹⁴ ; 2.129; 1.91; 20		0.97 (62.12) 5.00 (10.00)				
		1.658·10 ¹⁴ ; 2.121; 3.20; 20	0.707 (100)					
	2. Спектры н	ейтронов в центре металлической а	ктивной зоны ро	сакторов на бы	стрых нейтро	нах		
2	Реактор БР-1 (ВНИИЭФ, Россия)	2.745·10 ¹⁴ ; 1.197; 2.57; 14	0.802 (54.19)	5.00 (45.81)				
		3. Спектры нейтроно	в специальных с	борок				
3	Сборка ISNF	1.366·10 ¹⁴ ; 1.028; 1.95; 15	0.850 (48.56)	5.00 (36.07)		1.06 (15.37)		
	(США)		,			1.06 (13.37)		
	2	 Спектры нейтронов утечки из акт (R- расстояние от 			оров			
	Реактор БАРС-1,	(**	, , , , , , , , ,					
4	R=300 (ЦФТИ МО, Россия)	3.636·10 ¹² ; 1.404; 1.76; 18	0.786 (66,66)	5.00 (32.87)	. 3.30 (0.19)	0.90 (0.28)		
	5. Спектры	нейтронов специальных замедляю	щих сборок (R-	расстояние от 1	центра АЗ, м	м)		
	Реактор БАРС-1							
5	ПГНИМ-1							
,	R=838	1.640·10 ¹⁴ ; 1.226; 0.90; 15	0.786 (54.75)	5.00 (45.25)				
	(ЦФТИ МО, Россия)							
	6.1	Спектры нейтронов на различных р	DOCCTORINARY OF I	AUTTO OFTUNIO	ă aouri			
	0. 4	импульсных реакторов на б		ах (R, мм)	и зоны			
6	Реактор БР-1, R=715	2 507 1012, 1 141, 1 04, 12	0.786 (49.46)	4.0 (33.45)	3.30 (0.65)	0.90 (5.53)		
	(ВНИИЭФ, Россия)	3.507·10 ¹² ; 1.141; 1.94; 12	0.786 (49.46)	8.0 (10.91)	3.30 (0.65)	0.90 (5.53)		
		7. Спектры нейтронов замо	едляющих сред р	реакторов	I			
		7. 1 Спектры нейтронов ур						
7	Реактор Ф-1, ГЦЭК	1.762·10 ¹⁰ ; 0.144; 1.16; 11	0.794 (3.04)	5.00 (19.50)	3.49 (40.22)	1.00 (37.24)		
	(КИ, Россия)	8. Спектры вод	HILLY BESTTORON					
8	Реактор ИР-100, ВЭК-4			5.00 (0.25)	2.50 (02.20)	0.00 (14.00)		
	(СВВМИУ, Украина)	2.461·10 ¹¹ ; 0.0345; 2.45; 16	0.780 (1.55)	5.00 (0.25)	3.50 (83.30)	0.98 (14.90)		
		9. Спектры растворных аг	периодических р	еакторов		•	•	
9	Реактор ГИДРА, ЦЭК							
	(КИ, Россия)	1.320·10 ¹¹ ; 0.716; 1.42; 11	0.780 (35.76)	5.00 (3.86)	3.51 (14.16)	0.97 (46.22)		
	10. Спе	жтры нейтронов исследовательских	к материаловедч	еских ядерных	реакторов			
10	Реактор РБТ-6,							
10	ОП-4 (ВЭК-11)	7.129·10 ¹² ; 0.760; 1.49; 11	0.740 (34.60)	5.00 (11.25)	2.50 (0.28)	1. (53.87)		
	(НИИАР, Россия)	11.6		<u> </u>	L			
	V	11. Спектры нейтронов ядерного р	еактора атомног	и электростанц	ии			
	Уран-графитовый реактор РБМК-1000							
	(34-32) H=1,901 m							
11	Е=3167 МВт	2.013·10 ¹⁴ ; 0.443; 0.84; 12	0.770 (13.38)	4.00 (35.19)	1.30 (23.75)	1.00 (27.68)		
	Температура:	2.013·10**; 0.443; 0.84; 12				1.00 (27.68)		
	-замедл.графита –519°C							
	-нейтронного газа −501°C							
	(ЛАЭП, Россия)		1414 5					
		12. Спектры генератор	ов 14 МэВ-нейт		2.20 (1.67)	0,950 (1,45)	146 (75.00	
12.1	Favonaman HE 12 II					10 タうひ (1 45)	114.6 (75.09	
12	Генератор НГ-12 И	2,35·10 ¹⁰ ; 11,27; 1,29; 17		0,97 (10,93)	3,20 (1,67)	0,,,,,,,,	.,. (,	
12	Пучок атомарных			2,60 (10,86)	3,20 (1,67)	,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
12	Пучок атомарных дейтонов				3,20 (1,67)	,,,,,,,	,- (,	
12	Пучок атомарных				3,20 (1,67)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,- (,	
12	Пучок атомарных дейтонов Е _d =210 кэВ				3,20 (1,67)	(1,10)	,- (,	

В седьмом и восьмом разделах таблицы спектры нейтронов в замедляющих средах (графита или воды) уран-графитовых и водных реакторов, которые применяются преимущественно для целей: градуировки детекторов системы управления и защиты ядерных реакторов, калибровки детекторов систем определения выгорания ядерного топлива в твелах активной зоны реакторов и контроля герметичности твелов при работе ядерного реактора; наработки радионуклидов применяемых в науке и технике.

В остальных разделах табл. 2 широко представлены: спектры нейтронов растворных апериодических реакторов, в которых активная зона выполнена из водных растворов высокообогащенного урана (до 90% ²³⁵U); спектры нейтронов исследовательских материаловедческих реакторов; спектры нейтронов реактора РБМК-1000 АЭС, а также спектры генераторов нейтронов с энергией ~14 МэВ, применяемых для целей термоядерных исследований и облучения онкобольных.

Литература

- 1. Васильев Р.Д., Ярына В.П., Севастьянов В.Д. Государственный специальный эталон единицы плотности потока нейтронов для области измерений на ядерно-физических установках// Измерительная техника, 1974, №7, с.10-14.
- 2. ГОСТ 8.105-80. Государственная система обеспечения единства измерений. Государственный

специальный эталон и государственная поверочная схема для средств измерений плотности потока и флюенса нейтронов на ядернофизичес-ких установках

- 3. Бакулин Ю.П., Григорьев Е.И., Квасов Е.И. и др. Создание опорного нейтронного поля ОП-1. Материалы 3-го Всесоюзного совещания по метрологии нейтронного излучения на реакторах и ускорителях. М.: ЦНИИ атоминформ, 1983, с.98-103.
- 4. Борисов Г.А., Севастьянов В.Д., Ярына В.П. Создание отраслевой метрологической базы нейтронных измерений. Тезисы докладов 5-го Всесоюзного совещания по метрологии нейтронного излучения на реакторах и ускорителях, 3-7 декабря 1990г. М.: НПО ВНИИФТРИ, 1990, с.3-4.
- 5. Севастьянов В.Д., Ярына В.П., Борисов Г.А. и др. Комплекс моделирующих и опорных нейтронных полей на базе реактора БАРС-1 ВАНТ// Сер.: Физика радиационного воздействия на радиоэлектронную аппаратуру, 1994, в.3-4, с.64-68.
- 6. Севастьянов В.Д. Система моделирующих опорных полей нейтронов на исследовательских реакторах. Атомная энергия, 2000, вып.5, т.88, с. 378-387.
- 7. Севастьянов В.Д. Создание и исследование системы моделирующих опорных полей нейтронов на исследовательских ядерно-физических установках. Диссертация на со-искание учёной степени доктора технических наук, М., 2000, т.1, с.1-250, т.2, с.1-217.

- 8. Справочное руководство "Интегральные эксперименты в проблеме переноса ионизирующих излучений" под редакцией к.ф.-м.н. Л.А.Трыкова. М.: Энергоатомиздат, 1985.
- 9. Григорьев Е.И., Галиев Н.Б., Севастьянов В.Д., Ярына В.П. Стандартные образцы в системе метрологического обеспечения нейтронных измерений на атомных реакторах. - Сб. тезисов докладов на Международном симпозиуме "Стандартные образцы в системе метрологического обеспечения качества материалов, здравоохранения и охраны окружающей среды" 25-28 сентября 1979. М.: Изд-во стандартов, 1979, с.57.
- 10. Галиев Н.Б., Григорьев Е.И., Севастьянов В.Д., Ярына В.П. Нейтронно-активационные средства измерений для массового применения. Материалы 3-го Всесоюзного совещания по метрологии нейтронного излучения на реакторах и ускорителях. М.: ЦНИИатоминформ, 1983, т.1, с.116-125.
- 11. IASTM-EURATOM Simposium on Reactor Dosimetry Develoupment and Standardization, Petten, Sept. 22-26, 1976.
- 12. Proceedings, of consultants meeting on nuclear data for reactor dosimetry, Vienna, IAEA, 1973.
- 13. Neutron Cross Sections For Reactor Dosimetry, IAEA-208, Vienna, 1978.
- 14. Борисов Г.А., Севастьянов В.Д., Вершинин В.Г. и др. Прецизионные измерения с делящимися детекторами нейтронов в реакторе

- БИР-2. Тезисы докладов 5-го Всесоюзного совещания по метрологии нейтронного излучения на реакторах и ускорителях. М.: НПО ВНИИФТРИ, 1990, с.202-203.
- 15. Севастьянов В.Д. Разработка стандартных детекторов нейтронов. Диссертация на соискание учёной степени кандидата технических наук. М., 1979, с.1-110.
- 16. Севастьянов В.Д., Тютиков Н.В. Исследование образцов веществ с делящимися нуклидами. Методы и аппаратура для точных измерений параметров ионизирующих излучений. Сб. научных трудов ВНИИФТРИ.- М., 1984, с.77-84.
- 17. Васильев Р.Д., Севастьянов В.Д., Цой В.С., Давиденко В.А. Образцовая радиометрическая установка типа УОР-1 для измерения активности альфа-источников. Методика и аппаратура для точных измерений параметров ионизирующих излучений. Труды ВНИИФТРИ. М., 1975, в.22(52), с. 39-44.
- 18. Севастьянов В.Д., Тютиков Н.В., Ярына В.П. Способ применения нейтронно-активационных детекторов с делящимися нуклидами. Тезисы докладов 4-го Всесоюзного совещания по метрологии нейтронного излучения на реакторах и ускорителях. М. ,1985.с.27.
- 19. Севастьянов В.Д., Лягушин В.И., Маслов Г.Н., Пермяков Ю.В. О развитии методов контроля качества и аттестации стандартных образцов делящихся веществ// Измерительная техника, 1997, № 11, с.65-67.
- 20. Севастьянов В.Д., Лягушин В.И. Методы аттестации стандарт-

- ных образцов 235 U, 238 U и 237 Np с толщиной слоя нуклида мишени 0,5-3 мг/см 2 //Измерительная техника, 1997, № 9 с.56-58.
- 21. Кошелев А.С., Маслов Г.Н., Одинцов Ю.М., Севастьянов В.Д. Измерение температуры нейтронов детекторами из меди и лютеция. Тезисы докладов VII Российской научной конференции "Защита от ионизирующих излучений ядернофизических установок", 22-24.09.1999 г.
- 22. Кошелев А.С., Маслов Г.Н., Петров Ю.В., КАСКАД комплексная вычислительная программа для метода интегральных нейтронных детекторов.- 5-е Всесоюзное совещание по метрологии нейтронного излучения на реакторах и ускорителях. 3-7 декабря 1990г. Тезисы докладов. М.: ВНИИФТРИ, 1990, с.116-118.
- 23. Маслов Г.Н., Севастьянов В.Д., Кошелев А.С. Метод расчёта спектров нейтронов по результатам измерений с интегральными детекторами реализованный в новой версии программы КАСКАД// Измерительная техника, № 5, 2003, c.58-62.
- 24. Кошелев А.С., Севастьянов В.Д. Метод оценки погрешности определения спектров полей нейтронов ядерно-физических установок// При-боры и техника эксперимента, №4, 2011, с. 1-7.
- 25. МЕТОДИКА ГСССД MP182-2011 (Аттестат №182 от 03.05.2011). «Методика восстановления спектров нейтронов ядерных реакторов и нейтронных генераторов КАСКАД 200(176)» В.Д. Сева-

- стьянов, А.С. Кошелев. Российский научно-технический Центр информации по стандартизации, метрологии и оценки соответствия. М., 2011. 17 с.: Рус. назв. Деп. в ФГУП «СТАНДАРТИНФОРМ», №878а 2011 кк, 03.05.2011г.
- 26. МИ 1806 Государственная система единства измерений. Характеристики реакторных нейтронных полей. Методика расчёта спектров нейтронов по результатам нейтронно-активационных измерений.
- 27. ENDF/B-VI Summary Documentation Compiled and Edited by P.F.Rose BNL-ENDF-201, 1991
- 28. Garber D., Dunford C., Perlstein S. ENDF-102 Data Format and Procedures for Evalueted Nuclear Data File ENDF BNL-NDS-50496, 1975.
- 29. Севастьянов В.Д. Анализ согласуемости и "оценка" корректности системы, наиболее изученных интегральных сечений дозиметрических ядерных реакций в полях мгновенных нейтронов деления ядер 255 U тепловыми нейтронами и спонтанного деления ядер 252 Cf// Измерительная техника, № 2, 2012, с.67-72.
- 30. Севастьянов В.Д., Кошелев А.С., Маслов Г.Н. Механизм формирования спектра мгновенных нейтронов при делении ядер 235 U, 239 Pu, 252 Cf// Атомная энергия, 2001, т.91, в.3, с.206-212.
- 31. Севастьянов В.Д., Кошелев А.С., Маслов Г.Н. Высокоинтенсивные поля нейтронов в центре металлической активной зоны быстрых реакторов как первичные стандартные поля нейтронов// Приборы и

- техника эксперимента, № 4, 2003, c.5-19.
- 32. Mannhart W. Status of the Evaluation of the Ntutron Spectrum of 252Cf // Consultans, 13-15 Oct. 2008. Braunschueig; PTB. P.1-11.
- 33. JATRL 1235. JENDL Dosimetry File . JAERI, 1992, P. 24-26.
- 34. ГСССД 131-89. Нейтронноакивационные детекторы для реакторных измерений. Сечения реакций взаимолействия нейтронов с ядрами.
- 35. Севастьянов В.Д., Кошелев А.С., Маслов Г.Н. Характеристики полей нейтронов. Источники мгновенных нейтронов деления и 14 МэВ
- генераторы нейтронов, исследовательские и энергетические реакторы, специальные конвертирующие нейтронное излучение устройства. Справочник в 2 томах, т. №1. Менделеево: Изд-во ФГУП ВНИИФТРИ, 2014, 339 с.
- 36. Севастьянов В.Д., Кошелев А.С., Маслов Г.Н. Характеристики полей нейтронов. Источники мгновенных нейтронов деления и 14 МэВ генераторы нейтронов, исследовательские и энергетические реакторы, специальные конвертирующие нейтронное излучение устройства. Справочник в 2 томах, т. №2. Менделеево: ВНИИФТРИ, 2014, 356 с.