Фундаментальные исследования в метрологии

УДК 539.184.27 НОВЫЕ СТРАТЕГИИ В РАЗРАБОТКАХ ОПТИЧЕСКИХ СТАНДАРТОВ ЧАСТОТЫ, ОСНОВАННЫХ НА ИСПОЛЬЗОВАНИИ ОПТИЧЕСКИХ РЕШЕТОК В.Д. Овсянников¹, В.Г. Пальчиков², Х. Катори³

1. Воронежский государственный университет, 394006 Воронеж,

2. ФГУП "ВНИИФТРИ", Менделеево, Московская область,

3. Университет в Токио, Bunkyo-ku, 113-8656, Япония

Достижения в разработках оптических стандартов частоты с неопределенностью воспроизведения единиц времени и частоты на уровне $10^{-17} - 10^{-18}$ требуют беспрецедентной точности в оценке роли неопределенностей высших порядков, обусловленных влиянием оптической решетки на сдвиг частоты «часового перехода». В настоящей статье мы предлагаем систематический расчет вкладов мультипольных, нелинейных, ангармонических эффектов в бюджет неопределенности часов на основе оптических решеток для щелочноземельно-подобных атомов Sr, Yb и Hg.

Ключевые слова: оптические стандарты частоты, «магические» длины волн, эффект Штарка, поляризуемости, отстройки частоты

Введение

В настоящее время общепринятыми международными стандартами времени и частоты являются так цезиевые называемые часы. т.е. стандарты, воспроизводящие единицы времени и частоты на основе электронного перехода между компонентами сверхтонкой структуры ¹³³Сѕ в основном соатома цезия стоянии. Принятое на сегодняшний день определение единицы временисекунды в системе единиц СИ привязано к периоду излучения, соответствующему переходу между указанными электронными уровнями в атоме цезия ¹³³Сs.

Следующим важным шагом к повышению точности и стабильности атомных часов является увеличение частоты используемых атомных переходов, т.е. переход к оптическим стандартам времени и частоты, частота которых на несколько порядков выше частоты цезиевых микроволновых стандартов. Оптические часы могут быть реализованы с использованием переходов в долгоживущие электронные состояния в одиночных атомах или ионах, захваченных в магнито-оптическую ловушку и лазерно охлажденных в ней до температуры в несколько микрокельвинов. В настоящее время наилучшие результаты по развитию оптических часов на холодных атомах и ионах достигнуты на лабораторных установках в США (NIST), Германии (PTB). Великобритании (NPL). Франции и Японии. Получена относительная точность на уровне 10⁻¹⁸ для оптических часов на электронных переходах в ионах Al⁺ в электромагнитной ловушке Пауля [1] и несколько единиц 10⁻¹⁸ для часов на электронных переходах в нейтраль-

ных атомах Sr в оптической решетке [2]. Такая точность соответствует отставанию (опережению) в доли секунды за все время существования Вселенной (13.7 млрд. лет).

Несмотря на то, что достижения современной лазерной и спектроскопической техники уже позволяют говорить о возможностях еще большего увеличения точности в оптических стандартах частоты и времени, лальнейшее повышение точности оптических часов наталкивается на ряд фундаментальных физических проблем и ограничений, обусловленных, в частности, излучением абсолютно черного тела, что приводит к существованию предела воспроизводимости и стабильности частоты измеряемых переходов. С другой стороны, достижения в разработках оптических стандартов частоты с неопределенностью воспроизведения единиц времени и частоты на уровне $10^{-17} - 10^{-18}$ требуют беспрецедентной точности в оценке роли неопределенностей высших порядков, обусловленных влиянием оптической решетки на сдвиг частоты «часового перехода». Одним из наиболее успешных подходов к решению этой важной проблемы, является использование так называемой «магической» длины волны лазерного поля, формирующего оптическую решетку в стандарте часто-ТЫ.

Магическая длина волны (МДВ) оптической решетки, с помощью которой осуществляется захват холодных щелочноземельно-подобных атомов в ловушку в режиме ДикаЛэмба, делает возможным наблюдение «часовых переходов» между основным (g) $6s^2({}^1S_0)$ и возбужденным (е) метастабильным $6s6p({}^{3}P_{0})$ состояниями атомов, свободным от доплеровских и штарковских сдвигов частоты. Результаты экспериментальных измерений магических длин волн для атомов стронция, иттербия и ртути соответственно рав- $6s6p(^{3}P_{0})$ (Sr атомы [3]), ны: $\lambda_{mag} = 759.3537$ нм (Yb атомы [4]) и $\lambda_{mag} = 362.53$ нм (Нg атомы [5]). динамический эффект Для МДВ Штарка для основного и возбужденного состояний атомов приводит к одинаковым полевым поправкам для этих состояний, что в свою очередь обуславливает их полное взаимное сокращения в «часовом переходе» оптического стандарта частоты. Однако эквивалентность линейных по интенсивности I поля решетки штарковских сдвигов частоты, определяемыми динамическими поляризуемостями $\alpha_{e}(\omega_{mag}) = \alpha_{g}(\omega_{mag})$ при МДВ $ω_{mag} = 2πc / λ_{mag}$, вовсе не гарантирует эвивалентность вклада эффектов высшего порядка, в первую очередь поправок квадратичных по интенсивности I, определяемых гиперполяризуемостями $\beta_e(\omega_{mag})$ И $\beta_{g}(\omega_{mag})$. Кроме того, наряду с диполяризуемостями польными $\alpha^{E1}_{e(g)}(\omega_{mag})$ (E1) существуют еще и мультипольные поляризуемости высшего порядка, в первую очередь

Фундаментальные исследования в метрологии 21

 $\alpha_{e(g)}^{M1}(\omega_{mag})$ магнитно-дипольная (М1) и электрическая квадрупольная $\alpha_{e(g)}^{E2}(\omega_{mag})$ (E2) поляризуемости атомных состояний, которые вносят ненулевой вклад в линейный по интенсивности I динамический эффект Штарка. Поправка на мультипольные взаимодействия, хотя и имеет порядок малости на уровне 10⁻⁶-10⁻⁷по отношению к электрическому дипольному приближению Е1, приводит к специфическому пространственному распределению поля в решетке, существенно отличающемуся от Е1-приближения, и, следовательно, должна быть корректно учтена в прецизионных измерениях частоты. В частности, поправки Е2-М1 – типов могут влиять на МДВ в зависимости от конкретных условий эксперимента. Так, в бегущей волне, для которой пространственное расинтенсивности поля пределение вдоль лазерного пучка является однородным, линейный по полю І штарковский сдвиг определяется суммой поляризуемостей $\alpha_{e(g)}^{\Sigma}(\omega_{mag}^{t}) = \alpha_{e(g)}^{E1}(\omega_{mag}^{t}) + \alpha_{e(g)}^{qm}(\omega_{mag}^{t}),$ гле $\alpha_{e(g)}^{qm}(\omega_{mag}^{t}) = \alpha_{e(g)}^{E2}(\omega_{mag}^{t}) + \alpha_{e(g)}^{M1}(\omega_{mag}^{t}) -$

сумма E2-M1 поляризуемостей. Между тем, в стоячей волне оптической решетки E2-M1– взаимодействия отстают по фазе на четверть волны от E1взаимодействий и, следовательно, их следует вычесть из E1 поляризуемости, т.е. $\alpha_{e(g)}^{dqm}(\omega_{mag}^{s}) = \alpha_{e(g)}^{E1}(\omega_{mag}^{s}) - \alpha_{e(g)}^{qm}(\omega_{mag}^{s})$ и магическая длина волны $\lambda_{mag}^{t(s)} = 2\pi c / \omega_{mag}^{t(s)}$ определяется поразному для бегущей и стоячей волны оптической решетки в зависимости от двух различных условий:

$$\alpha_e^{\Sigma}(\omega_{mag}^t) = \alpha_g^{\Sigma}(\omega_{mag}^t)$$
(1)

- для бегущей волны и

$$\alpha_e^{dqm}(\omega_{mag}^s) = \alpha_g^{dqm}(\omega_{mag}^s)$$
(2)

-для стоячей волны [6]. Важно подчеркнуть, что измеряемая разность для этих двух магических длин волн ω_{mag}^{t} и ω_{mag}^{s} , в принципе, находится в пределах возможностей современного эксперимента, основанных на использовании лазерных решеток. Тем не менее, как будет описано в данной статье, даже минимальная отстройка МДВ может быть использована для эффективного контроля эффектов высшего порядка в бюджете неопределенностей оптических стандартов частоты и времени. Такой анализ вплоть до недавнего времени не проводился в метрологической практике.

Существуют два основных типа магических длин волн, соответствующих выбору захвата холодных атомов в ловушку: (i) притягивающий потенциал в ловушке, для которого потенциальная энергия атомов имеет минимум и захваченные атомы локализованы в окрестностях пучностей лазерной решетки (маги-

ческая длина волны с «красной» отстройкой), и (ii) отталкивающий потенциал в ловушке, в котором атомы локализуются в окрестностях узлов лазерной решетки с I=0 (магическая длина волны с «голубой» отстройкой). Очевидно, что в последнем случае роль эффектов высшего порядка можно существенно снизить по сравнению со случаем «красной» отстройки. Однако для «голубой» отстройки магической длины волны необходима 3D - модификация в конструкции оптической решетки, поскольку в силу свойств отталкивающего потенциала 1D модификация оптической решетки практически невозможна. Тем не менее, в настоящей работе мы рассмотрим оба случая (і) и (іі) оптической решетки для одномерного 1D случая с целью анализа и оценки роли «не магических» эффектов, а также выработки возможных стратегий в разработках оптических стандартов частоты, основанных на использовании оптических решеток.

Наиболее исследованный случай оптических часов на атомах Sr детально описан нами в недавней статье [6] в базисе модельного потенциала Фьюса (МПФ) применительно к расчету атомных поляризуемостей и гиперполяризуемостей [7]. В настоящей работе мы провели новые расчеты атомных характеристик, представленных в [6], на основе переопределения параметров МПФ. В качестве критерия качества в выборе параметров МПФ являлась степень согласия теоретически рассчитанных экспериментально измеренных И

Альманах современной метрологии, 2015, №2

«магических» длин волн для щелочноземельно-подобных атомов Sr, Yb и Hg.

Три различные стратегии в определениях МДВ представлены в статье для каждого из атомов Sr, Yb и Hg. В дополнение к определениям МДВ, представленным формулами (1) и (2), рассмотрен также промежуточный случай эквивалентности только дипольных поляризуемостей для основных и возбужденных состояний

$$\alpha_e^{E1}(\omega_{mag}^d) = \alpha_g^{E1}(\omega_{mag}^d).$$
(3)

Данное определение (3) для МДВ наиболее часто используется в современной литературе. Как было впервые отмечено в [6], влияние мультипольных эффектов может обусловить появление дополнительных составляющих в бюджете неопределенностей оптических стандартов времени и частоты даже без учета эффектов пространственного распределения для электрического дипольного и мультипольного взаимодействий в поле оптической решетки.

В настоящей статье детально исследовано различие в пространственном распределении для электрического дипольного (Е1) и мультипольного взаимодействий (М1 и Е2) применительно к двум конфигурациям оптических решеток с «красной» и «голубой» отстройками для магических длин волн. Для краткости рассмотрен только частный случай одномерной 1D–оптической ре-

шетки. В статье представлены результаты теоретических расчетов для сдвигов частоты атомов Sr, Yb и Нд в оптической решетке. Выполнены прецизионные оценки для вкладов нелинейно-оптических эффектов высшего порядка, которые не могут быть скомпенсированными выбором МДВ и, следовательно, должны быть корректно учтены при анализе результатов измерений частоты часового перехода в оптических стандартах частоты. В статье использована атомная система единиц, в которой выполняется условие $e = m = \hbar = 1$. В этих единицах скорость света полагалась равной С = 137.036, а постоянная тонкой структуры определялась соотношением $\alpha = 1/137.036$.

І.Оптические решетки для «красной» отстройки магической длины волны

Индуцированный лазерным полем решетки сдвиг частоты возника-

$$V(X) = V_{E1}\cos(kX) + (V_{E2} + V_{M1})\sin(kX), \quad (5)$$

и операторы E1-, E2- и M1взаимодействий имеют вид $V_{F1} = (\mathbf{r} \cdot \mathbf{E}_0);$

$$V_{E2} = \frac{\alpha \omega}{\sqrt{6}} r^2 \left(\left\{ \mathbf{E}_0 \otimes \mathbf{n} \right\}_2 \cdot \mathbf{C}_2(\theta, \varphi) \right); (6)$$
$$V_{M1} = \frac{\alpha}{2} \left([\mathbf{n} \times \mathbf{E}_0] \cdot (\mathbf{J} + \mathbf{S}) \right).$$

Здесь $\mathbf{r} = r\mathbf{n}$ - радиус-вектор валентного электрона, $\mathbf{C}_2(\theta, \varphi)$ - модифицированная сферическая гар-

моника единичного вектора п для угловых переменных, J u S - полный и спиновый моменты атома. С учетом членов второго и четвертого порядков по взаимодействию атомов V(X)с полем решетки, соответственно линейных и квадратичных по интенсивности поля решетки I, взаимодействия (6) определяют потенциальный барьер решетки [6] в основном (g) или возбужденном (е) состоянии

$$U_{g(e)}^{latt}(X,I) \approx -D_{g(e)}(I) + U_{g(e)}^{harm}(I)X^2 - U_{g(e)}^{anh}(I)X^4 + \dots,$$
(7)

Альманах современной метрологии, 2015, №2

ет как разность штарковских энергий для основного и возбужденного состояний часового перехода. Штарковские энергии определяются на основе взаимодействия захваченного в ловушку атома с векторным электрическим полем

 $E(X,t) = 2E_0 \cos(kX) \cos(\omega t)$, (4) осциллирующим во времени с частотой ω в пространстве вдоль падающего лазерного пучка с волновым вектором $\mathbf{k} = k\mathbf{e}_x$, $k = \omega/c$, X - пространственная компонента атома, определяющая положение вектора вдоль оси лазерной решетки. Взаимодействие атома с решеткой описывается оператором

 $V(X,t) = \operatorname{Re}\left\{V(X)\exp(-i\omega t)\right\},\$

в котором пространственный фактор определяется формулой

где X соответствует смещению атома относительно положения равновесия X=0, а потенциальная энергия (7) отсчитывается от ее наинизшего значения

 $U_{g(e)}^{latt}(0,I) = -D(I)$; глубина барьера $D_{g(e)}(I) = \alpha_{g(e)}^{E1}(\omega)I + \beta_{g(e)}(\omega)I^{2}$, (8) определяется электрическими дипольными поляризуемостями $\alpha_{g(e)}^{E1}(\omega)$ и гиперполяризуемостями $\beta_{g(e)}(\omega)$ атомов в основном или возбужденном состоянии, зависящими от частоты поля лазерной решетки ω . Коэффициент перед квадратом смещения

$$U_{g(e)}^{harm}(I) = \left[\alpha_{g(e)}^{dqm}(\omega)I + 2\beta_{g(e)}(\omega)I^{2}\right]k^{2} = \frac{\mathcal{M}\Omega_{g(e)}^{2}(I)}{2}$$
(9)

определяется зависящей от интенсивности собственной частотой осцилляций, $\Omega_{g(e)}(I)$ для основного и возбужденного состояний атома в потенциальном барьере (7). Коэффициент перед четвертой степенью X определяется ангармонической поправкой низшего порядка к штарковскому потенциалу в стоячей волне решетки, и этот коэффициент также зависит от комбинаций E1-E2-M1 поляризуемостей

 $\alpha_{g(e)}^{dqm}(\omega) = \alpha_{g(e)}^{E1}(\omega) - \alpha_{g(e)}^{qm}(\omega)$ и гиперполяризуемостей в соответствии с формулой

$$U_{g(e)}^{anh}(I) = \left[\alpha_{g(e)}^{dqm}(\omega)I + 5\beta_{g(e)}(\omega)I^{2}\right]\frac{k^{4}}{3}.$$
(10)

Уравнение (7) описывает потенциал решетки в пространственной области $|X| \ll \lambda/4$, где λ соответствует длине волны лазерного поля решетки; атомы в решетке локализованы с пространственной периодичностью $\lambda/2$. Атом, захваченный в лазерную решетку, осуществляет колебательное движение в стационарном состоянии с энергией

$$\mathbb{E}_{g(e)}^{vib}(I,n) = -D_{g(e)}(I) + \Omega_{g(e)}(I) \left(n + \frac{1}{2}\right) - \mathbb{E}_{g(e)}^{anh}(I) \left(n^{2} + n + \frac{1}{2}\right), \quad (11)$$

где первый член в (11) является энергией гармонического осциллятора в состоянии с главным колебательным квантовым числом *n*, а второй член учитывает ангармонические поправки, возникающие из последнего члена для потенциальной энергии (7). Таким образом, индуцированный полем решетки сдвиг частоты возникает как разность осциллирующих энергий (11) атома в основном и возбужденном состояниях. Предполагая эквивалентность главных колебательных квантовых

чисел *п* для переходов между состо- жим Лэмба-Дикэ), часовой сдвиг яниями часового перехода (ре- частоты определяется выражением: $\Delta v_{cl}^{latt}(I,n) = \mathbb{E}_{e}^{vib}(I,n) - \mathbb{E}_{e}^{vib}(I,n) =$

$$= -\Delta D(I) + \Delta \Omega(I) \left(n + \frac{1}{2} \right) - \Delta \mathbb{E}^{anh}(I) \left(n^2 + n + \frac{1}{2} \right), \tag{12}$$

где

а разности в (13) соответствуют: 1) глубинам потенциальных барьеров (8); 2) частотам гармонических ос-

 $\Delta \mathbb{E}^{anh}(I) = \mathbb{E}_{e}^{anh}(I) - \mathbb{E}_{anh}^{anh}(I),$

 $\Delta D(I) = D_e(I) - D_o(I);$

 $\Delta\Omega(I) = \Omega_e(I) - \Omega_o(I);$

$$\Omega_{g(e)}(I) = 2\sqrt{\mathcal{E}^{rec}} \left[\alpha_{g(e)}^{dqm}(\omega)I + 2\beta_{g(e)}(\xi,\omega)I^2 \right];$$
(14)

эти частоты соотносятся с энергиями отдачи фотона как $\mathcal{E}^{rec} = k^2 / (2\mathcal{M})$ (\mathcal{M} - масса атома) и определяются коэффициентом (9) гармонической части потенциала (7);

 ангармоническим поправкам к колебаниям атома в ловушке с разделенными потенциальными барьерами оптической решетки:

$$\mathbb{E}_{g(e)}^{anh}(I) = \frac{\mathcal{E}^{rec}}{2} \left[1 + \frac{3\beta_{g(e)}(\mathcal{E},\omega)I}{\alpha_{g(e)}^{dqm}(\omega)} \right], \quad (15)$$

которые соответствуют последнему члену в правой части формулы (7).

Разность дипольных и мультипольных поляризуемостей $\alpha_{g(e)}^{dqm}(\omega) = \alpha_{g(e)}^{E1}(\omega) - \alpha_{g(e)}^{qm}(\omega)$ (вместо суммы $\alpha_{g(e)}^{\Sigma}(\omega) = \alpha_{g(e)}^{E1}(\omega) + \alpha_{g(e)}^{qm}(\omega)$, которая возникает в случае взаимодействия атома с бегущей волной

деиствия атома с оегущеи волнои решетки), возникает вследствие сдвига на четверть периода как для временной, так и для пространственных переменных между Е1 и (E2+M1) взаимодействиями атома со стоячей волной оптической решетки [9]. Как следует из уравнений (8-15), зависящая от интенсивности разность энергий, определяющая сдвиг частоты (12), может быть представлена как [6]

$$\Delta D = \left[\alpha_e^{E1}(\omega) - \alpha_g^{E1}(\omega)\right]I + \left[\beta_e(\xi, \omega) - \beta_g(\xi, \omega)\right]I^2;$$

$$\Delta \Omega = \Omega_e - \Omega_g = 2\left[\sqrt{\alpha_e^{dqm}(\omega) + 2\beta_e(\xi, \omega)I} - \sqrt{\alpha_g^{dqm}(\omega) + 2\beta_g(\xi, \omega)I}\right]\sqrt{\xi^{rec}I};$$

$$\Delta \mathbb{E}^{anh} = \frac{3}{2}\xi^{rec}\left[\frac{\beta_e(\xi, \omega)}{\alpha_e^{dqm}(\omega)} - \frac{\beta_g(\xi, \omega)}{\alpha_g^{dqm}(\omega)}\right]I.$$
(16)

Окончательно, индуцированный полем решетки сдвиг частоты часо-Альманах современной метрологии, 2015, №2 вого перехода с учетом квадратич- вок по *I* можно представить в виде ных по интенсивности поля попра-

$$\Delta v_{cl}^{latt}(n,\xi,I) = c_{1/2}(n)I^{1/2} + c_1(n,\xi)I + c_{3/2}(n,\xi)I^{3/2} + c_2(\xi)I^2.$$
(17)

Проводя отстройку частоты поля лазерной решетки в окрестности магических длин волн можно добиться уменьшения зависящих от интенсивностей поля значений коэффициентов с до их минимальных значений. Дробные коэффициенты в степенных зависимостях интенсивности I в формуле (17) возникают из-за корневой зависимости от I для собственных частот (14). Так, коэффициент с_{1/2} определяется разностью комбинаций поляризуемостей $\alpha_{g(e)}^{dqm}(\omega)$. Линейный по *I* член определяется главным образом разностью между электрическими дипольными поляризуемостями $\alpha_{\sigma(e)}^{E1}(\omega)$; в дополнение, существенно меньшая по амплитуде поправка на гиперполяризуемость для линейного члена по I возникает из-за ангармонического коэффициента (16). Коэффициенты $c_{3/2}$ и c_2 зависят от разности гиперполяризуемостей $\Delta\beta(\boldsymbol{\xi},\boldsymbol{\omega}) = \beta_{\boldsymbol{e}}(\boldsymbol{\xi},\boldsymbol{\omega}) - \beta_{\boldsymbol{g}}(\boldsymbol{\xi},\boldsymbol{\omega})\,,$ BXOдящих в определение собственных частот $\Omega_{g(e)}$, и глубин потенциаль ных барьеров. $D_{g(e)}$ В дополнение к зависимости от частоты лазерной решетки гиперполяризуемости зависят также от поляризаций поля решетки [10]. Эта зависимость может быть представлена в виде тензорных компонент гиперполяризуемости:

$$\beta_{g(e)}(\omega,\xi) = \beta_{g(e)}^{l}(\omega) + \xi^{2} \left(\beta_{g(e)}^{c}(\omega) - \beta_{g(e)}^{l}(\omega) \right), \tag{18}$$

где ξ - степень циркулярной поляризации ($-1 \le \xi \le 1$), $\beta_{g(e)}^{l(c)}(\omega)$ - зависящая от частоты гиперполяризуемость для линейной (циркулярной) поляризации поля лазерной решетки.

Противоположные знаки компонент гиперполяризуемостей $\Delta \beta^{l}$ и $\Delta \beta^{c}$ возникают в том случае, когда существует "магическая степень циркулярной поляризации", $\mathcal{E}_{mag} = \pm 1/\sqrt{1 - \Delta \beta^{c} / \Delta \beta^{l}}$, при которой разность гиперполяризуемостей для часового перехода (18) может обращаться в ноль. Этот эффект может быть наблюдаемым на магических длинах волн в атомах Yb при $\xi_{mag} = 0.777$ и в атомах Hg при $\xi_{mag} = 0.705$, как это следует из табл. 1, в которой представлены восприимчивости для атомов Sr, Yb и Hg, вычисленные в приближении модельного потенциала [7]. Для Sr атомов разности $\Delta \beta_m^l$ и $\Delta \beta_m^c$ при магических длинах волн, отрицательны, таким образом, магическая эллиптичность в этом случае не су-

ществует и минимальное значение разности гиперполяризуемостей соответствует случаю линейной поляризации. Дополнительная колонка для атомов стронция в табл. 1 соответствует случаю магической длине волны с «голубой» отстройкой $\lambda_{max} = 389.889$ нм [11].

Таблица 1

Характеристики атомов Sr, Yb и Hg в оптической решетке на магических лпинах волн

Атом	Sr		Yb	Hg
λ_{mag} /HM	813.42727	389.889	759.35374	362.53
$\alpha_m^{E1} / \left(\frac{\kappa \Gamma \mathfrak{u}}{\kappa \mathrm{Bt/cm^2}} \right)$	45.2	- 92.7	40.5	5.70
$\Delta \alpha_m^{qm} / \left(\frac{\mathrm{m}\Gamma\mathrm{u}}{\mathrm{\kappa}\mathrm{B}\mathrm{t}/\mathrm{c}\mathrm{m}^2} \right)$	1.38	- 13.6	- 8.06	8.25
$Re\left\{\Delta\beta_{m}^{l}\right\} / \left(\frac{m\Gamma\mathfrak{u}}{(\kappaBT/cm^{2})^{2}}\right)$	- 200.0	1150	- 366.3	- 2.50
$Im\left\{\Delta\beta_{m}^{l}\right\} \left(\frac{M\Gamma \mathfrak{q}}{(\kappa BT/cM^{2})^{2}}\right)$	0	2.48	0	4.34
$\operatorname{Re}\left\{\Delta\beta_{m}^{c}\right\} \left \left(\frac{M\Gamma\mathfrak{u}}{(\kappaBT/cM^{2})^{2}}\right)\right $	- 311.0	1550	240.2	2.53
$\mathrm{Im}\left\{\Delta\beta_{m}^{c}\right\} / \left(\frac{\mathrm{m}\Gamma\mathrm{u}}{(\mathrm{\kappa}\mathrm{B}\mathrm{t}/\mathrm{c}\mathrm{m}^{2})^{2}}\right)$	0	2.37	0	6.37
$\Omega_m / \sqrt{I} \left(\frac{\kappa \Gamma \mathfrak{q}}{\sqrt{\kappa \mathrm{Bt}/\mathrm{cm}^2}} \right)$	25.05	74.8	18.03	13.1
$10^9 \cdot \frac{\partial \left(\Delta \alpha_m^{E1}\right)}{\partial \omega} \Big/ \frac{1}{\kappa \mathrm{BT/cm^2}}$	0.254	10.3	0.720	0.134
<i>Е^{rec}</i> /кГц	3.47	15.1	2.00	7.57

В области 758.5 < λ_{lat} < 759.7 нм, близкой к области двухфотонного резонанса на уровне 6s8p(³P₀) для линейно поляризованной волны решетки (см. рис. 1), эта область соответствует магической длине волны $\lambda_{mag} = 759.3537$ нм [4]. Здесь компоненты гиперполяризуемости $\Delta\beta^{l}$ и $\Delta\beta^{c}$ имеют противоположный знак, как это следует из расчетных данных (см. рис 1). Аналогичная ситуация не возникает в окрестности $\lambda_{mag} = 813.42727$ нм [3] для атома Sr, хотя аналогичная область противоположных знаков существует меж-

ду узлами решетки $\Delta\beta^c$ и $\Delta\beta^l$ при $\lambda = 800$ и $\lambda = 803$ нм соответственно, которые располагаются довольно далеко от λ_{mag} , как показано на рис. 2.

Необходимо отметить, что наряду со сдвигом частоты, ассоциируемым с действительной частью $\Delta \beta^{l(c)}$, гиперполяризуемости B03бужденные часовые состояния атомов Нд на магической длине волны испытывают сопоставимое по амплитуде уширение, обусловленное двухфотонной ионизацией и описываемой мнимой частью гиперполя- $\operatorname{Im}\left[\Delta\beta^{l(c)}\right]$ Значение ризуемости. является положительным для произвольной поляризации поля лазерной

решетки. Перечисленные эффекты описываются коэффициентами c (за исключением $c_{1/2}$, которые не содержит поправки на гиперполяризуемости), вводимыми как мнимая часть сдвига (17).

В противоположность атомам Hg, мнимая часть гиперполяризуемости для Sr атомов в решетке для голубой отстройки магической длины волны по порядку величины на три порядка меньше, чем реальная часть гиперполяризуемости. Таким образом, уширение линии часового перехода в этом случае пренебрежимо мало в сравнении со сдвигом частоты.

Рис. 1. Зависимость от длины волны λ (в нанометрах) для гиперполяризуемости (в единицах мкГц/(кВ/см²)²) для часового перехода в атомах Yb для линейной (пунктирная кривая) и циркулярной (сплошная кривая) поляризации лазерной волны оптической решетки. Вертикальные линии обозначают положения двухфотонных резонансов на 6s8p(³P₂) уровне и длине волны 754.226 нм, на 6s8p(³P₀) -уровне на длине волны 759.71 нм (этот резонанс возникает только для линейной поляризации) и на 6s5f(³F₂) –уровне на дине волны 764.953 нм.

Рис. 2. Зависимость от длины волны λ (в нанометрах) для гиперполяризуемости (в единицах мкГц/(кВ/см²)²) для часового перехода в атомах Sr для линейной (пунктирная кривая) и циркулярной (сплошная кривая) поляризации лазерной волны оптической решетки. Вертикальные линии обозначают положения двухфотонных резонансов на 65s7p(³P₂) – уровне и длине волны 795.5 нм, на 5s7p(³P₀) – уровне на длине волны 797 нм (этот резонанс возникает только для циркулярной поляризации) и на 5s4f(³F₂) – уровне на длине волны 7818.6 нм.

II. Стратегии для определения магической длины волны «красной» отстройки

Очевидно, что главная поправка в штарковскую энергию (11) атома в ловушке на магической длине волны лазерного поля определяется Е1- поляризуемостью, которая превосхо-ЛИТ М1-Е2 поляризуемости более чем на 6 порядков. Следовательно, разница в магических длинах волн, определяемых формулами (1-3).может проявляться лишь на уровне шестого десятичного знака. Тем не менее, эта разность может существенно влиять на численные значения коэффиентов при целых и дробных степенях интенсивности лазерного поля и, следовательно, на сдвиг частоты часового перехода (17). Ниже в этом разделе будут рассмотрены 3 различных подхода к определению магических длин волн, а также представлены численные значения для всех коэффициентов.

Эквивалентность сдвигов часовых уровней в бегущей волне

Электрическое дипольное E1, электрическое квадрупольное E2 и магнитнодипольное взаимодействия атома с полем бегущей волны синхронны. Следовательно, сдвиг в первом порядке по интенсивности поля *I* определяется суммой поляризуемостей $\alpha_{g(e)}^{\Sigma}(\omega)$. Для исключения сдвига первого порядка по полю используется настройка частоты поля

на магическую длину волны $\omega = \omega_m^t$, для которой выполняется условие (1). Для этой частоты глу-

бина потенциала (8) и все коэффициенты в правой части уравнения (17) имеют ненулевые значения:

$$C_{1/2}^{t}(n) = -2\Delta\alpha_{t}^{qm}\sqrt{\frac{\mathcal{E}_{t}^{rec}}{\alpha_{t}^{\Sigma}}}\left(n+\frac{1}{2}\right); \quad C_{1}^{t}(\xi,n) = \Delta\alpha_{t}^{qm} - \frac{3\mathcal{E}_{t}^{rec}}{2\alpha_{t}^{\Sigma}}\Delta\beta_{t}(\xi)\left(n^{2}+n+\frac{1}{2}\right); \quad (19)$$

$$C_{3/2}^{t}(\xi,n) = 2\Delta\beta_{t}(\xi)\sqrt{\frac{\mathcal{E}_{t}^{rec}}{\alpha_{t}^{\Sigma}}}\left(n+\frac{1}{2}\right); \quad C_{2}^{t}(\xi) = -\Delta\beta_{t}(\xi),$$

где индекс "t" обозначает соответствующие значения на магической длине волны ω_m^t . Поправки на эффекты гиперполяризуемости для низших колебательных уровней с (n<3) пренебрежимо малы на интенсивностях, необходимых для захвата атомов в ловушку. Для примера, используя численные данные из табл. 1 для атомов Hg, сдвиг частоты, индуцированный оптической решеткой (17), может быть представлен (в миллигерцах) в следующем виде:

ловушку с наименьшей энергией ко-

лебательного состояния с главным

колебательным квантовым числом

n=0. Исключить корневой член воз-

можно при выполнении условий ра-

$$\Delta v_{cl}^{t}(n,\xi,I) = -9.507(2n+1)I^{1/2} + \left[8.25 + (0.005 - 0.01\xi^{2})(n^{2} + n + 1/2)\right]I + \left(5.80\xi^{2} - 2.88\right)10^{-3}(2n+1)I^{3/2} + \left(2.5 - 5.03\xi^{2}\right)10^{-3}I^{2},$$
(20)

где интенсивность лазерной решетки *I* представлена в единицах кВ/см². Для *I*>2 кВ/см² положительное значение для линейной по *I* поправки полностью компенсируется отрицательным корневым членом и обуславливает главную поправку к сдвигу (20). С точностью в 3 десятичных знака *n*- и ξ -зависимости линейного по полю коэффициента пренебрежимо малы, как это следует из рис. 3, изображающего сдвиг (20) для наинизшего значения энергии колебательного состояния (*n*=0).

Эквивалентность сдвигов часовых уровней в стоячей волне

В стоячей волне оптической решетки атомы охлаждаются вплоть до температур

 $T < \Omega / 2 \approx \mathcal{E}^{rec} / k_{\rm B} \approx 1 \,\mu{\rm K}$, что делает возможным захват атомов в

венства $\alpha_g^{dqm}(\omega_m^s) = \alpha_e^{dqm}(\omega_m^s) \equiv \alpha_s^{dqm}.$ При этих условиях $c_{1/2}^s = 0$ и $\Delta v_{cl}^s(\xi, n, I) =$ $= c_1^s(\xi, n)I + c_{3/2}^s(\xi, n)I^{3/2} + c_2^s(n)I^2,$ (21) где $c_1^s(\xi, n) = -\Delta \alpha_s^{qm} - \frac{3\mathcal{E}_s^{rec}}{2\alpha_s^{dqm}}\Delta \beta_s(\xi) \left(n^2 + n + \frac{1}{2}\right),$ $c_{3/2}^s(\xi, n) = 2\Delta \beta_s(\xi) \sqrt{\frac{\mathcal{E}_s^{rec}}{\alpha_s^{dqm}}} \left(n + \frac{1}{2}\right),$ (22) $c_2^s(\xi) = -\Delta \beta_s(\xi).$

Индекс "s" обозначает соответствие магической длине волны

$$C_1^s(\xi,n) = -\Delta \alpha_s^{qm} - \frac{3\mathcal{E}_s^{rec}}{2\alpha_s^{dqm}} \Delta \beta_s(\xi) \left(n^2 + n + \frac{1}{2}\right),$$

$$C_{3/2}^s(\xi,n) = 2\Delta \beta_s(\xi) \sqrt{\frac{\mathcal{E}_s^{rec}}{\alpha_s^{dqm}}} \left(n + \frac{1}{2}\right),$$

 $c_2^s(\xi) = -\Delta\beta_s(\xi).$

С точностью до трех значащих цифр сдвиг (21) для атомов Hg может быть записан без корневой зависимости и отрицательным знаком для линейного члена. Соответствующий график представлен на рис. 4. Как и в случае бегущей волны, главная поправка к сдвигу определяется линейным по I членом, определяется мым главным образом разностью мультипольных поляризуемостей. $\Delta \alpha_{e}^{qm}$

Эквивалентность дипольных поляризуемостей для часовых уровней

В случае

 $\alpha_{\alpha}^{E1}(\omega_{m}^{E1}) = \alpha_{e}^{E1}(\omega_{m}^{E1}) = \alpha_{m}^{E1}$ поправки первого порядка для глубины потенциала (8) эквивалентны. Следовательно, главная поправка к коэффициенту с₁, определяемая в (19) и (22) разностью мультипольных поляризуемостей $\Delta \alpha_{s(t)}^{qm} \in$, сокращается, остается лишь поправка на гиперполяризуемость, которая на два порядка меньше по порядку величины, как следует из данных табл. 1. Одновременно коэффициент $c_{1/2}^{E1}$ равен лишь половине коэффициента $c_{1/2}^{t}$ в уравнении (19). В этом случает совокупность коэффициентов в правой части уравнения (17) может быть представлены в следующем виде:

$$c_{1/2}^{E1}(n) = -\Delta \alpha_m^{qm} \sqrt{\frac{\boldsymbol{\mathcal{E}}_{E1}^{rec}}{\alpha_m^{E1}} \left(n + \frac{1}{2}\right)}, \quad c_1^{E1}(\boldsymbol{\mathcal{E}}, n) = -\frac{3\boldsymbol{\mathcal{E}}_{E1}^{rec}}{2\alpha_m^{E1}} \Delta \beta_{E1}(\boldsymbol{\mathcal{E}}) \left(n^2 + n + \frac{1}{2}\right),$$

$$c_{3/2}^{E1}(\boldsymbol{\mathcal{E}}, n) = 2\Delta \beta_{E1}(\boldsymbol{\mathcal{E}}) \sqrt{\frac{\boldsymbol{\mathcal{E}}_{E1}^{rec}}{\alpha_m^{E1}}} \left(n + \frac{1}{2}\right), \quad c_2^{E1}(\boldsymbol{\mathcal{E}}) = -\Delta \beta_{E1}(\boldsymbol{\mathcal{E}}).$$
(23)

Таким образом, в случае равных дипольных поляризуемостей коэффициенты, $c_1^{E1}(\xi, n) \quad c_{3/2}^{E1}(\xi, n)$ и $c_2^{E1}(\xi, n)$ пропорциональны разности гиперполяризуемостей $\Delta \beta^{E1}(\xi)$.

Очевидно, для всех трех описанных выше стратегий определения магических длин волн коэффициенты $c_{3/2}$ и c_2 , совпадающие до 6 значащих цифр, пропорциональны $\Delta\beta(\mathcal{E})$. Коэффициент при корневой зависимости $c_{1/2}^s = 0$, в то время как магические длины волн, определяемые уравнениями (1) и (3), соотносятся друг с другом при выполнении условия $c_{1/2}^{E1} \approx 0.5 c_{1/2}^{t}$ и пропорциональны разности мультипольных поляризуемостей $\Delta \alpha_m^{qm}$. Как следует из данных табл. 1, коэффициенты при линейном члене в (17) удовлетворяют условию $|c_1^{E1}| << |c_1^s| \approx |c_1^t|$. Поправки мультипольных взаимодействий при $c_1^t(\xi, n)$ и $c_1^s(\xi, n)$ противоположны по знаку, а поправки

на ангармонические взаимодействия к коэффициенту $c_1^{t(s)}(\xi, n)$, пропорциональны $\Delta\beta(\xi)$, и эта разность существенно меньше по порядку величины в сравнении с $\Delta\alpha^{qm}$. Проведенные оценки показывают, что выбором магической частоты ω_m^{E1} можно влиять на вклад нелинейных и мультипольных сдвигов в частоту часового перехода и, следовательно, обеспечить минимум неопределенности, обусловленной влиянием лазерной решетки. Зависимость частоты часового перехода (17) от интенсивности с коэффициентами (23) для атомов Hg можно представить численно в виде следующей формулы (в единицах мГц):

$$\Delta v_{cl}^{E1}(n,\xi,I) = -9.507(n+1/2)I^{1/2} + (4.98 - 10.02\xi^2)10^{-3}(n^2 + n + 1/2)I + (5.80\xi^2 - 2.88)10^{-3}(n+1/2)I^{3/2} + (2.50 - 5.03\xi^2)10^{-3}I^2,$$
(24)

в которой интенсивность выражена в единицах кВ/см². Для "магической" степени циркулярной поляризации $\xi = \pm 0.705$ все гиперполяризуемости (зависящие от - ξ) в правых частях уравнений (23) и (24) равны нулю, и остается ненулевым только корневой вклад по интенсивности лазерного поля решетки. В этом случае остается ненулевым лишь неисключенный сдвиг, индуцированный лазерной решеткой, который для ниж-

где положительные линейные и квадратичные поправки полностью компенсируются отрицательными вкладами корневой поправки и поправкой при *I* 3/2 для *I*=163 кB/см², как следует из рис. 5.

Зависимости индуцированных лазерной решеткой частотных сдвигов от интенсивности поля решетки представлены на рис. 3-5 для часовых переходов в атомах Hg для переходов в низших колебательных состояниях *n*=0 для трех различных магических длин волн: для бегущей него колебательного уровня n=0 равен $\Delta v_{cl}^{E1}(0, \xi_{mag}, I) = -4.75 I^{1/2}$.

Следовательно, при $I = 25 \text{ кB/см}^2$, для повышения точности измерений частоты часового перехода до уровня 18-го знака, этот сдвиг должен быть контролируемым с точностью, как минимум превышающей уровень 4%. Для линейной поляризации $\xi = 0$ сдвиг равен

$$\Delta v_{cl}^{E1}(0,0,I) = -4.75I^{1/2} + 2.49 \cdot 10^{-3}I - 2.88 \cdot 10^{-3}I^{3/2} + 2.5 \cdot 10^{-3}I^2$$

волны (рис. 3), в стоячей волне (рис. 4) и для промежуточного случая эквивалентности дипольных поляризуемостей (рис. 5). Как следует из этих рисунков, для магических длин волн, определяемых для бегущей или стоячей волн (рис. 3 и 4), индуцированный лазерной решеткой, частотный сдвиг слабо зависит от поляризации лазерного поля решетки, поскольку вклад гиперполяризуемости пренебрежимо мал в сравнении с поправками от мультипольных поляризуемостей в диапа-

зоне интенсивностей I<200 кВ/см². Напротив, в случае «эквивалентных дипольных поляризуемостей» для магической длины волны (рис. 5), в котором поправки от вклада мультипольных поляризуемостей к линейному по интенсивности члену полностью сокращаются, только эффекты гиперполяризуемостей в коэффициентах $c_i(i=1, 3/2, 2)$ obyславливают зависимость сдвига от поляризации лазерной волны. Следовательно, этот случай наиболее интересен в спектроскопии часового перехода. Поправка на гиперполяризуемость существенно зависит от поляризации лазерной волны. Для линейной поляризации, $\xi = 0$, при интенсивности *I*≈160 кВ/см² положительные поправки от линейного и квадратичного членов по интенсивности І в формуле (17) могут компенсироваться отрицательными вкладами корневых поправок и поправок I 3/2. Для циркулярной и эллиптической поляризации с $\xi > \xi_{mag} \approx 0.7$ поправки на гиперполяризуемость в полном сдвиге частоты отрицательны и возрастают

при увеличении интенсивности *I* (см. рис. 5).

Таким образом, принципиальной особенностью атомов ртути в оптической решетке с магической длиной волны для «эквивалентных дипольных поляризуемостей» является возможность высокоэффективного контроля индуцированного лазерной решеткой частотного сдвига (24) посредством изменения интенсивности и поляризации. Соответствующим выбором I и ξ ($\xi < \xi_{mag}$) можно полностью исключить этот сдвиг. Однако необходимо учитывать и мнимую часть $\Delta v_{cl}^{E1}(n, \xi, I)$, которая соответствует эффекту двухфотонной ионизации для верхнего часового состояния в поле лазерной волны оптической решетки. Так, в дополнение к сдвигу, обусловленному действительной частью гиперполяризуемости, имеет место эффект ионизационного уширения

 $\Gamma(\xi, n, I) = \text{Im}[\Delta v(\xi, n, I)]$ часового перехода в атомах ртути для магической длины волны, определяемый мнимой частью гиперполяризуемости:

$$\Gamma(\xi, n, I) = \left\{ \operatorname{Im}[c_{1}(\xi, n)]I + \operatorname{Im}[c_{3/2}(\xi, n)]I^{3/2} + \operatorname{Im}[c_{2}(\xi, n)]I^{2} \right\}$$

=
$$\operatorname{Im}[\Delta\beta(\xi)] \left\{ -\frac{3\varepsilon^{rec}}{2\alpha_{m}} (n^{2} + n + 1/2)I + \sqrt{\frac{\varepsilon^{rec}}{\alpha_{m}}} (2n + 1)I^{3/2} - I^{2} \right\}.$$
 (25)

Как уже было отмечено выше, это значение обуславливает наличие дополнительной неопределенности, связанной с двухфотонной ионизацией, и эту величину необходимо учитывать в полном бюджете неопределенностей оптического стандарта частоты на лазерной решетке. На рис. 5, приведена зависимость функции (25) для n = 0 и n = 0, которая представлена для реальных и мнимых составляющих для сдвига час-

тоты (17).

На рис. 6 и 7 представлены наиболее интересные случаи зависимостей частотных сдвигов $\Delta v_{cl}^{s}(0,\xi,I)$ для атомов Sr и $\Delta v^{{\scriptscriptstyle E1}}_{{\scriptscriptstyle cl}}(0,{\it E},I)$ для атомов Уb. В соответствии с уравнениями (19)-(23) и данными табл. 2, представлены численные значения коэффициентов c_i (i = 1/2, 1, 3/2, 2). Отрицательные значения поправок для степеней интенсивности 1/2 и 3/2 в частотном сдвиге (17) для атомов Sr в лазерной решетке для магической длины волны (в случае стоячей волны) компенсируются положительными квадратичными членами уже при интенсивности от I=5(для циркулярной поляризации) до I=8 (для линейной поляризации), и зависимость $\Delta v_{cl}^s (n = 0, \xi, I)$ преобразуется в параболу с положитель-

ным коэффициентом

 $c_2^s(\xi) = 0.2 + 0.111\xi^2$ мГц/(кW/см²)² (рис. 6). Более замечательный результат может возникнуть для сдвига $\Delta v_{cl}^{E1}(n = 0, \xi = \xi_{mag}, I)$ атомов Yb (рис.7), где

$$c_1^{E1}(\xi_{mag}) = c_{3/2}^{E1}(\xi_{mag}) = c_2^{E1}(\xi_{mag}) = 0$$

Вообще говоря, для рассматриваемых значений интенсивностей I сдвиг может быть уменьшен практически до нуля с использованием соответствующих степеней циркулярной поляризации ξ_0 :

$$\Delta v_{cl}^{E1}(n = 0, \mathcal{E}_0, I) = 0$$

B частности,
$$\mathcal{E}_0^2(I = 5 \text{ kW/cm}^2) \approx 0.314$$
,
$$\mathcal{E}_0^2(I = 10 \text{ kW/cm}^2) \approx 0.504$$
,

$$\lim_{l \to \infty} \mathcal{E}_0^2 \to \mathcal{E}_{mag}^2 = 0.6044$$

И

Рис. 3. Зависимость сдвига частоты часового перехода Δν (в мГц) в атомах Hg от интенсивности I (в кВ/см²) оптической решетки с магической длиной волны, определяемой для бегущей волны. Сдвиги частоты для линейной, "магической эллиптичности" и циркулярной поляризации весьма близки друг к другу, вплоть до I=200 кВ/см².

Рис. 4. Зависимость сдвига частоты часового перехода Δv (в мГц) в атомах Hg от интенсивности I (в кВ/см²) оптической решетки с магической длиной волны, определяемой для стоячей волны (линейная поляризация – сплошная линия, «магическая эллипличность» -пунктирная линия, циркулярная поляризация – штрих-пунктирная линия).

Рис. 5. Зависимость сдвига частоты часового перехода $\Delta v_{cl}^{E1}(n, \xi, I)$ (в мГц) в атомах Нg, захваченных в основное состояние с колебательным квантовым числом n = 0, от интенсивности I (в единицах кВ/см²) для линейной поляризации ($\xi = 0$, сплошная кривая); "магической эллиптичности" ($\xi = \xi_{mag}$, штриховая кривая), и циркулярной поляризации ($\xi = 1$ пунктирная кривая) лазерной волны для случая "эквивалентных дипольных по-

ляризуемостей" для магической длины волны; тонкая штрих-пунктирная кривая отображает мнимую часть частотного сдвига (уширение линии часового перехода (25)) для линейной поляризации $\xi = 0$ лазерного поля.

Таблица 2.

Коэффициенты для индуцированного лазерной решеткой частотного сдвиг	ra
(17) для колебательных уровней с <i>n</i> =0	

ATOM	Sr	Yb	Hg		
$c_{1/2}^{t} = 2c_{1/2}^{E1}, \text{ M}\Gamma \text{II}(\text{KB/cM}^{2})^{-1/2}$	- 0.382	1.79	-9.51		
	$c_{1/2}^s = 0$				
$c_1^t = -c_1^s$, $M\Gamma \mu (\kappa B/cm^2)^{-1/2}$	1.39	- 8.06	8.25		
$c_1^{E1}(\xi = 0), \text{ M}\Gamma \mu (\kappa B/cm^2)^{-1/2}$	0.0115	0.0136	0.0025		
$c_1^{E1}(\xi = \pm 1), \text{ M}\Gamma \mu (\kappa B/cm^2)^{-1/2}$	0.0179	- 0.0089	- 0.0025		
$c_{3/2}^{t(s,E1)}(\xi = 0), \mathrm{M}\Gamma\mathrm{U}(\mathrm{\kappa}\mathrm{B/cm}^2)^{-1/2}$	- 0.0554	- 0.0814	- 0.0029		
$c_{3/2}^{t(s,E1)}(\xi = \pm 1),$ $M\Gamma \mu (\kappa B/cm^2)^{-3/2}$	- 0.0862	0.0534	0.0029		
$c_2^{t(s,E1)}(\xi = 0), \mathrm{M}\Gamma \mathrm{II}(\kappa \mathrm{B/cm}^2)^{-2}$	0.200	0.366	0.0025		
$c_2^{t(s,E1)}(\xi = \pm 1), \text{ M}\Gamma \mathfrak{U}(\kappa B/cm^2)^{-2}$	0.311	-0.240	- 0.00253		

Рис. 6. Зависимость сдвига частоты часового перехода Δv (в единицах мГц) в атомах Sr от интенсивности I (в кВ/см²) для линейной поляризации (сплошная кривая), эллиптической поляризации (пунктирная кривая) и циркулярной поляризации (штриховая кривая) для магической длины волны оптической решетки (случай стоячей волны лазерного поля).

Рис. 7. Зависимость сдвига частоты часового перехода Δν (в единицах мГц) для атомов Yb от интенсивности *I* (в кВ/см²) для линейной, эллиптической и циркулярной поляризации поля решетки; магическая длина волны определялась для "эквивалентных дипольных поляризуемостей".

III. Магическая длина волны для «голубой» отстройки

Для магической длины волны с отталкивающим потенциалом оптической решетки соответствующие значения дипольной поляризуемости отрицательны $\alpha^{E1}(\omega) < 0$, а штарковская энергия – положительна, поэтому положение равновесия атома

находится вблизи узлов стоячей волны решетки с вектором электрического поля

 $\mathbf{E}(X,t) = 2\mathbf{E}_0 \sin(kX)\sin(\omega t), \quad (26)$

где X пространственная компонента атома относительно положения равновесия. Пространственная часть оператора взаимодействия атома с полем волны решетки (26) может быть записана как

$$V(X) = V_{E1}\sin(kX) + (V_{E2} + V_{M1})\cos(kX)$$
(27)

с Е1-, Е2- и М1-взаимодействиями в уравнениях (6). Захватывающий потенциал оптической решетки с магической длиной волны, учитывающий зависимость от эффектов гиперполяризуемости и ангармонизма, может быть записан по аналогии со случаем магической длиной волны с «красной отстройкой» в форме уравнения (7). Основу преимущества отталкивающего захватывающего потенциала составляет тот факт, что область локализации атомов располагается вблизи узлов стоячей волны решетки, причем в ее узлах поле решетки обращается в ноль. Следовательно, эффекты гиперполя-

ризуемости не могут возникать в областях минимума потенциальной энергии или в собственных частотах колебательных уровней:

$$U_{g(e)}^{(0)}(I) = U_{g(e)}^{latt}(X = 0, I) = -\alpha_{g(e)}^{qm}(\omega)I; \quad \Omega_{g(e)} = 2\sqrt{-\varepsilon^{rec}\alpha_{g(e)}^{dqm}(\omega)I}.$$
(28)

Энергии колебательных уровней атома в основном (возбужденном) уровнях часового перехода в окрестностях узлов решетки стоячей волны с магической длиной волны с «голубой» отстройкой определяются уравнением:

$$\mathbb{E}_{g(e)}^{vib}(I,n) = U_{g(e)}^{(0)} + \Omega_{g(e)}\left(n + \frac{1}{2}\right) - \mathbb{E}_{g(e)}^{anh}(I)\left(n^{2} + n + \frac{1}{2}\right),$$
(29)

в котором эффекты гиперполяризуемости могут учитываться только в ангармонической поправке

$$\mathbb{E}_{g(e)}^{anh}(I) = \frac{1}{2} \mathcal{E}^{rec} \left[1 - \frac{3\beta_{g(e)}(\omega)I}{\alpha_{g(e)}^{dqm}(\omega)} \right],\tag{30}$$

содержащей в дополнение к энергии (28), линейную по интенсивности лазерного поля *I* поправку, в виде:

$$\Delta v_{cl}^{latt}(\omega_m, I, n) = \mathbb{E}_e^{vib} - \mathbb{E}_g^{vib} = c_{1/2}(n)I^{1/2} + c_1(n)I, \qquad (31)$$

где

$$c_{1/2}(n) = \sqrt{\mathcal{E}^{rec}} \left(\sqrt{-\alpha_e^{dqm}(\omega_m)} - \sqrt{-\alpha_g^{dqm}(\omega_m)} \right) (2n+1);$$

$$c_1(n) = -\Delta \alpha^{qm}(\omega_m) + \frac{3\mathcal{E}^{rec}}{2} \left[\frac{\beta_e(\omega_m)}{\alpha_e^{dqm}(\omega_m)} - \frac{\beta_g(\omega_m)}{\alpha_g^{dqm}(\omega_m)} \right] \left(n^2 + n + \frac{1}{2} \right);$$
(32)

Главная поправка к индуцированному полю решетки сдвигу частоты оптического перехода описывается вторым членом в правой части уравнения (29). Следовательно, выбор магической длины волны заключается в обеспечении условия эквивалентности собственных частот колебательного движения (28) атомов в основном и в возбужденном состояниях, $\Omega_g = \Omega_e$, содержащих корневую зависимость от интенсивности лазерного поля. Это означает, что при таком выборе магической длины волны коэффициент $c_{1/2}(n)$ может обратиться в ноль, и в результате остается лишь линейная зависимость

в частотном сдвиге (31). Линейный частотный сдвиг соответствует численному значению 136 мГц при *I*=10 кВ/см² (табл. 1) и, следовательно, возникает необходимость его точного контроля в высокоточных измерениях частоты часового перехода.

IV. Использование метода модельного потенциала для расчета электромагнитных восприимчивостей щелочно-земельных атомов

Расчеты магических длин волн в одноэлектронном приближении модельного потенциала [7] с использованием соответствующих эмпирических параметров, определяемых из

известных значений энергий атомных уровней [12], позволяют получить численные данные для Sr, Yb и Hg атомов, близкие к известным из литературы экспериментальным значениям (см. результаты для λ_{mag} в табл. 1). Результаты таких расчетов представлены на рис. 8-10.

Вообще говоря, приложение методов расчетов спектроскопических характеристик многоэлектронного атома с использованием одноэлектронного приближения, требует некоторой модификации метода модельного потенциала, точнее, выбора его параметров. Такая модификация метода модельного потенциала Фьюса была впервые продемонстрирована в работе[13]; впоследствии этот подход был успешно использован в расчетах поляризуемостей, гиперполяризуемостей, взаимодействий атомов с внешними полями, динамических взаимодействий, приложений в атомной спектроскопии и т.д (см., например, [7, 14-16]). Основная идея такой модификации заключается в следующем. Прежде всего, мы вводим нецелые значения для орбитального момента триплетных S-состояний *l̃*₃, которые, тем не менее, должны быть близки к реальным моментам Sсостояний, $\tilde{l}_{3_S} \approx l_S = 0$, и эффективные моменты для синглетных и триплетных D-состояний, которые должны удовлетворять равенству $\tilde{l}_{3_D} \approx \tilde{l}_{1_D} \approx l_D = 2$. Такой выбор ведет к переопределению целочисленого значения для радиального квантового числа *n*, для обеспечения исходного равенства $\tilde{l}_{3s} + n_r + 1 = v_{nl}$ для эффективного главного квантового числа V_{nl} определяемого из энергии $E_{nl} = -Z^2 / (2v_{nl}^2)$ атомного состояния $|nl\rangle$.

Данная модификация метода модельного потенциала Фьюса использовалась в настоящей работе в расчетах всей совокупности рассчитываемых характеристик для атомов Sr, Yb и Hg. Результаты расчетов магических длин волн представлены на рис. 8-10.

Рис. 8. Зависимость глубины потенциала решетки (в единицах килогерц) от длины волны (в единицах нанометров) при интенсивности лазерного поля I=10 кB/см² для атомов Sr в их возбужденном 5s5p³P₀ (е) и основном 5s² ¹S₀ (g) состоянии часового перехода.

Рис. 9. Зависимость глубины потенциала решетки (в единицах килогерц) от длины волны (в единицах нанометров) при интенсивности лазерного поля *I*=10 кВ/см² для атомов Yb в их возбужденном 6s6p³P₀ (е) и основном 6s² ¹S₀ (g) состоянии часового перехода. Результаты расчетов в приближении модельного потенциала $\lambda_{mag} \approx 762.6$ нм находятся в хорошем соответствии с данными экспериментальных измерений t $\lambda_{mag}^{exp} \approx 759.3537$ нм [4].

Фундаментальные исследования в метрологии 41

Заключение

В настоящей статье выполнены прецизионные расчеты эффектов высшего порядка для взаимодействия щелочно-земельных атомов с полем оптической решетки применительно к конструкциям современных оптических стандартов частоты на оптических решетках. Рассмотрены, в частности, мультипольные разложения оператора взаимодействия атомов с полем решетки для электрического дипольного (Е1) и мультипольного взаимодействий (M1 и E2). Определены аналитически и численно алгоритмы расчета магических длин волн для «красной» и «голубой» отстроек лазерного поля решетки с притягивающим и отталкивающим потенциалами решетки для одномерной модели лазерной

решетки. Сформулированы требовапредъявляемые к точности ния, определения магических длин волн для различных стратегий измерений частоты часового перехода для атомов Sr, Yb и Hg в оптической решетке. Подчеркивается, что для отдельных случаев измерений вклады нелинейно-оптических эффектов высшего порядка не компенсируются выбором МДВ и, следовательно, должны быть корректно учтены при анализе результатов измерений частоты часового перехода в оптических стандартах частоты.

Работа выполнены при частичной финансовой поддержке Министерства образования и науки РФ (проект No. 1226) и Российского фонда фундаментальных исследований (проект No. 14-02-00516-а).

Литература

1. Chou C.W., Hume D.B., Koelemeij J.C.J., Wineland D.J. and Rosenband T. Frequency ratio of Al+ and Hg+ single-ion ooptical clocks; metrology at the 17th decimal place// Phys. Rev. Lett, vol.104, 070802 (2010).

2. Bloom B.J., Nicholson T.L., Williams J.R., Campbell S.L., Bishof M., Zhang X., Zhang W., Bromley S.L., Ye J. An optical lattice clock with accuracy and stability at the 10-18 level, Nature vol. 506, 71 (2014).

3. Westergaard P.G., Lodewyck J., Lorini L., Lecallier A., Burt E.A., Zawada M., Millo J. and Lemonde P. Lattice-Induced Frequency Shifts in Sr Optical Lattice Clocks at the 10–17 Level//, Phys. Rev. Lett, vol. 106, 210801 (2011).

4. Barber Z.W., Stalnaker J.E., Lemke N.D. et al. Optical lattice induced light shifts in an Yb atomic clock// Phys.Rev.Lett, vol. 100, 103002 (2008).

5. Yi L., Mejri S., McFerran J.J., Le Coq Y. and Bize S.// Phys.Rev.Lett, 106, 073005 (2011).

6. Ovsiannikov V.D., Pal'chikov V.G., Taichenachev A.V., Yudin V.I. and Katori H. Multipole, nonlinear, and anharmonic uncertainties of clocks of Sr atoms in an optical lattice// Phys. Rev. A, vol. 88, 013405 (2013).

7. Manakov N.L, Ovsiannikov V.D. and Rapoport L.P. Atoms in a laser field// Phys. Rep, vol. 141, p.319 (1986).

8. Katori H., Takamoto M., Pal'chikov V.G. and Ovsiannikov V.D. Ultrastable optical clock with neutral atoms in an engineered light shift trap// Phys.Rev.Lett, vol. 91, 173005 (2003).

9. Taichenachev A.V., Yudin V.I., Ovsiannikov V.D., Pal'chikov V.G. and Oates C.W. Frequency shifts in an optical lattice clocks due to magnetic-dipole and electric-quadrupole transitions// Phys.Rev. Lett, vol. 101, 193601 (2008).

10. Taichenachev A.V., Yudin V.I., Ovsiannikov V.D. and Pal'chikov V.G. Optical lattice polarization effects on hyperpolarizability of atomic clock transitions// Phys.Rev.Lett, vol. 97, 173601 (2006).

11. Takamoto M., Katori H., Marmo S.I., Ovsiannikov V.D. and Pal'chikov V.G. Prospects for optical clocks with a blue-detuned lattice// Phys.Rev.Lett, vol. 102, 063002 (2009).

12. NIST Atomic Spectra Database (version 4.1) / Ralchenko Yu. [et al] // NIST ASD Team National Institute of Standards and Technology, Gaithersburg, MD. [Online]. Available at: http://physics.nist.gov/asd

13. Simons G. New model potential for pseudopotential calculations// J. Chem. Phys, vol. 55, p.756 (1971).

14. Kostelecky V.A. and Nieto M.M. Analytical wave functions for atomic quantum-defect theory// Phys. Rev. A, vol.32, p.3243 (1985).

15. Djerad M.T. Atomic parameters for transitions involving Rydberg states of singly ionized alkaline earths// J. Physique II, 1991, vol.1, p.1 (1991).

16. Celik G., Ates S., Ozarslan S. and Taser M. Transition probabilities, oscillator strengths and lifetimes for singly ionized magnesium// J. Quant. Spectrosc. & Radiat. Transfer, vol. 112, p. 2330 (2011).