УДК 53.08

АЛГОРИТМИЗАЦИЯ ПРОЦЕССА ОБРАБОТКИ ИЗМЕРИТЕЛЬНОЙ ИНФОРМАЦИИ ПРИ КОНТРОЛЕ ЗУБЧАТЫХ КОЛЁС НА КООРДИНАТНО-ИЗМЕРИТЕЛЬНЫХ МАШИНАХ М.В. Ушаков¹, И.А. Воробьев¹, С.М. Никольский²

¹ФГБОУ ВО «Тульский государственный университет», Тула, Россия,
²AO «АК «Туламашзавод», Тула, Россия,
tulaumv@yandex.ru,
imsilya@mail.ru,
nikolsky.serge@yandex.ru

Аннотация. В настоящей статье рассматривается подход к построению программных продуктов, предназначенных для обработки информации, получаемой при измерении эвольвентных зубчатых колёс.

Ключевые слова: измерение, контроль, зубчатое колесо, координатно-измерительная машина.

ALGORITHMIZATION OF THE PROCESS OF PROCESSING MEASURING INFORMATION WHEN MONITORING GEARS ON COORDINATE MEASURING MACHINE M.V. Ushakov¹, I.A. Vorobyov¹, S.M. Nikolsky²

¹Tula State University, Tula, Russia, ²JSC Tulamashzavod, Tula, Russia, tulaumv@yandex.ru, imsilya@mail.ru, nikolsky.serge@yandex.ru

Abstract. This article discusses an approach to the construction of software products designed to process information obtained by measuring involute gears.

Keywords: measurement, control, gear wheel, coordinate measuring machine.

При контроле деталей на координатно-измерительных машинах (КИМ) обычно получаемая информация представляет собой набор координат точек соответствующей точности в принятой локальной измерительной системе координат. Эти данные представлены в виде числовых массивов и требуют дополнительной обработки для сравнения с данными, представленными в соответствующих нормативных документах (чертежах, ГОСТах и т.п.).

Одной из подобных задач является определение соответствия результатов измерений параметров зубчатых колёс требованиям ГОСТ 1328-1-2017 [1, 2]. В данной статье рассматривается вопрос оценки результатов измерений только прямозубых колёс эвольвентного зацепления.

Альманах современной метрологии, 2022, № 3 (31)

При контроле параметров зубчатых колёс на КИМ результаты представляются параметрами (рис. 1) углового шага зубьев φ_z , определяемого относительно центра впадины, и координаты точек контрольной сетки боковых поверхностей зубьев справа и слева в пределах рабочих зон контакта. Обычно данная сетка задаётся шагами Δ_r и Δ_h и определяет количество уровней ($1 \le i \le n_h$) и количество точек на уровне ($1 \le j \le n_r$). Из полученных при измерении в виде числового файла данных (*.dat) формируется пятимерный массив A(p,q,i,j,k), в котором: p — номер контролируемого зуба колеса ($1 \le p \le Z_k$); q — сторона впадины — левая, правая ($1 \le q \le 2$); i — количество уровней ($1 \le i \le n_h$); j — количество точек на уровне ($1 \le j \le n_r$); k — размеры параметров X, Y, Z ($1 \le k \le 3$); k = 1 — координата X; k = 2 — координата X; k = 3 — координата X; X — отклонение от заданного профиля X (X , X ,

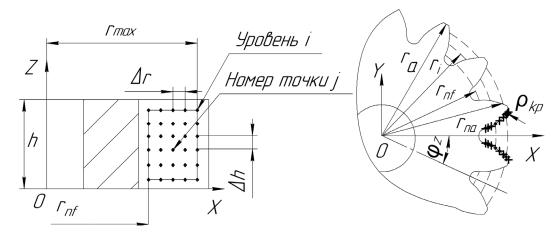


Рис. 1. Формирование контрольной сетки точек на боковой поверхности зуба: XYZ0 — локальная измерительная система координат; r_a — наружный радиус колеса; ρ_{kp} — радиус скругления при вершине зуба; r_{na} , r_{nf} — границы контролируемой зоны; h — толщина колеса; Δh , Δr — шаги сетки точек контроля

Если уровни измерений лежат параллельно плоскости X0Y локальной измерительной системы координат, то начальной операцией преобразования является определение отклонений измеряемых сечений от заданной эвольвентной формы. В этом случае следует определить координаты исходной эвольвенты в пределах заданных границ. Параметры z_k , a_n (угол зацепления), h, r_a и r_{na} должны приходить как исходная информация совместно с результатами измерений A (p, q, i, j, k).

Заданный профиль боковой поверхности зубьев (рис. 2) будет определяться положением эвольвенты, проходящей через середину поля допуска, определяемого параметрами E_{H_o} и T_H .

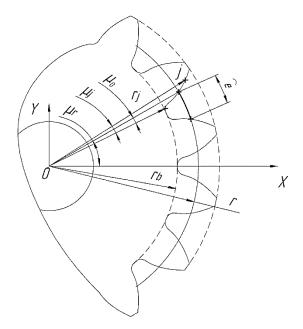


Рис. 2. Определение координат эталонного профиля: r — радиус делительной окружности; r_b — радиус основной окружности; r_j — радиус текущей точки; μ_0 , μ_r , μ_j — угловые параметры

Математически он будет определяться зависимостями [3]:

$$r = m_{n}z_{k} / 2; r_{b} = r \cos a_{n}; \cos a_{j0} = \frac{r_{b}}{r_{j0}};$$

$$\mu_{0} = \text{inv } a_{n} = \text{tg } a_{n} - a_{n}; \mu_{j0} = \text{inv } a_{j0} = \text{tg } a_{j0} - a_{j0},$$

$$S_{B} = \frac{\pi m_{n}}{2} - 2\left(\chi m_{n} + E_{H_{S}} - \frac{T_{H}}{2}\right) \text{tg } \alpha_{n}; \mu_{r} = \frac{\hat{e}}{2r};$$

$$\begin{cases} X_{3} = r_{j} \cos\left(\mu_{r} - \mu_{0} + \mu_{j0}\right); \\ Y_{3} = r_{j} \sin\left(\mu_{r} - \mu_{0} + \mu_{j0}\right); \\ z_{3} = \text{val}, \end{cases}$$

$$(2)$$

где a_n — нормальный угол зацепления (обычно 20°); m — модуль; z_k — число зубьев колеса; r — радиус делительной окружности; r_b — радиус основной; r_{j0} — радиус рассматриваемой точки эвольвентного профиля; a_{j0} — угол зацепления рассматриваемой точки эвольвентного профиля; χ — коэффициент коррекции; e — окружная ширина впадины стандартного исходного контура; E_{H_s} — наименьшее дополнительное смещение исходного контура (обычно < 0); T_H — допуск на смещение исходного контура; X_9 , Y_9 — параметры эталонной эвольвенты.

Погрешности изготовления зубьев при матричном задании точек контроля $\Delta(p, q, i, j, k)$ будут определяться как отклонения от заданной эвольвентной поверхности, то есть по нормали к поверхности по направлению радиуса кривизны, что выражается зависимостями (рис. 3):

$$r_{j} = \sqrt{X_{j}^{2} + Y_{j}^{2}}; \qquad \text{tg}\,\mu_{j} = \frac{Y_{j}}{X_{j}}; \qquad \cos\alpha_{j} = \frac{r_{b}}{r_{j}};$$

$$\alpha_{j} + \mu_{j} = \mu_{r} - \mu_{0} + \text{tg}\,\alpha_{j0};$$

$$\text{tg}\,\alpha_{j0} = \alpha_{j} + \mu_{j} - \mu_{r} + \mu_{0};$$

$$\Delta(p, q, i, j, 4) = r_{b}(\text{tg}\,\alpha_{j} - \text{tg}\,\alpha_{j0}), \qquad (3)$$

где r_j — радиус положения контрольной точки в локальной измерительной системе координат по результатам измерений; α_j — угол зацепления контрольной точки; μ_j — угол положения контрольной точки в локальной измерительной системе координат относительно оси X по результатам измерений.

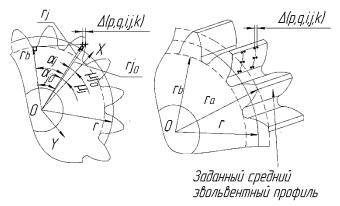


Рис. 3. Схема определения погрешностей боковой поверхности зуба относительно заданного среднего эвольвентного профиля: rj_0 — радиус точек среднего эвольвентного профиля; αj_0 — угол зацепления точек среднего эвольвентного профиля; r_i — радиус контрольных точек; α_i — угол зацепления контрольных точек

В зависимости от положения контрольной точки относительно среднего эталонного профиля $\Delta(p,q,i,j,4)$ может принимать как положительное, так и отрицательное значение.

Однако по полученным значениям погрешностей трудно определить их соответствие основным показателям норм кинематической точности, плавности и контакта ГОСТ 1328-1-2017. Кроме этого, определение положения оси X локальной измерительной системы координат обладает значительными погрешностями, связанными со случайным выбором первой впадины, относительно центра которой формируется система координат и производится отсчёт погрешностей, а также от накопления погрешностей, связанных с переходом к последующим локальным измерительным системам координат, что обусловлено их поворотом на угол:

$$\varphi_{pi} = \varphi_z (p_i - 1); \qquad \varphi_z = \frac{2\pi}{Z_K}, \qquad (4)$$

где p_i — номер впадины между зубьями, в которой проводится контроль; ϕ_z — угловой шаг зубьев.

Для более рациональной оценки указанных выше погрешностей $\Delta(p, q, i, j, 4)$ рекомендуется их представить в виде суммы двух составляющих (рис. 4):

$$\Delta(p, q, i, j, 4) = \Delta(p, q, i, j, 5) + \Delta(p, q, i, j, 6), \tag{5}$$

где $\Delta(p, q, i, j, 5)$ — отклонение положения контрольных точек одного из уровней относительно аппроксимирующей эвольвенты; $\Delta(p, q, i, j, 6)$ — отклонение положения аппроксимирующей эвольвенты от заданной средней эвольвентной поверхности.

В этом случае погрешность $\Delta(p, q, i, j, 5)$ будет отражать местную контрольную погрешность профиля Δ_{fK} , а погрешность $\Delta(p, q, i, j, 6)$ — местную контрольную погрешность шага Δ_{pK} для заданного конкретного уровня контроля с параметрами p, q, i, j.

Аппроксимация параметров результатов контроля точек рассматриваемого уровня производится за счёт поворота $\Delta \mu_j$ эвольвенты средней эвольвентной поверхности в направлении положения контрольных точек до получения одинаковых по абсолютной величине их максимальных положительных и отрицательных отклонений (рис. 4).

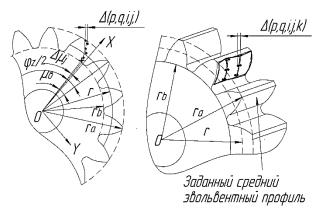


Рис. 4. Разложение основной погрешности контроля на составляющие: $\mu_{\text{в}}$ — положение начала заданного среднего эвольвентного профиля на основной окружности; $\Delta \mu_{j}$ — угловое отклонение положения аппроксимирующей эвольвенты от заданной средней эвольвентной поверхности

Расстояние от аппроксимирующей эвольвенты до контрольных точек $\Delta(p, q, i, j, 6)$ можно определить как:

$$\Delta(p, q, i, j, 5) = r_b \{ \operatorname{tg} \alpha_j - \operatorname{tg} (\alpha_{j0} + \Delta \mu_j) \}, \tag{6}$$

при этом изменение положения ($\Delta \mu_i$) для каждого уровня i производится до получения:

$$ABS(\Delta(p, q, i, j, 5)_{\text{max}}) = ABS(\Delta(p, q, i, j, 5)_{\text{min}}).$$

Погрешность, связанная с отклонением положения аппроксимирующей эвольвенты от заданной средней эвольвентной поверхности, равна

$$\Delta(p, q, i, j, 6) = r_b \{ \operatorname{tg} (\alpha_{i0} + \Delta \mu_i) - \operatorname{tg} \alpha_{i0} \}. \tag{7}$$

Для исключения исходной погрешности — установления начального положения локальной измерительной системы координат, для уточнения результатов измерений следует после определения погрешностей $\Delta(p, q, i, j, 4)$ для всех измеряемых поверхностей колеса произвести смещение её положения на угол $\Delta \varphi$, по (3) и путём перебора получить такое смещение $\Delta \varphi$, сумма квадратов всех отклонений которого была бы минимальной

$$\sum_{n=1}^{Z_K} \sum_{q=1}^{2} \sum_{i=1}^{n_h} \sum_{i=1}^{n_r} (p,q,i,j,4)^2 = \min.$$

После данной процедуры производится расчёт погрешностей $\Delta(p,q,i,j,5)$ и $\Delta(p,q,i,j,6)$.

Данная методика позволит разрабатывать модули управляющих программ для КИМ, предназначенных для измерения параметров зубчатых колёс, которые, в отличие от представленных, например, в работах [4, 5], не оснащены специализированным программным обеспечением, а также специализированными приспособлениями (поворотные столы и т.п.).

Список литературы

- 1. ГОСТ ISO 1328-1-2017. Передачи зубчатые цилиндрические. Система ISO. Классификация допусков на боковые поверхности зубьев. Часть 1. Определения и допускаемые значения отклонений на боковые поверхности зубьев зубчатого колеса. М.: Стандартинформ, 2018.
- 2. ГОСТ 13755-2015 (ISO 53:1998). Основные нормы взаимозаменяемости. Передачи зубчатые цилиндрические эвольвентные. Исходные контуры. М.: Стандартинформ, 2016.
- 3. ГОСТ 16532-70. Передачи зубчатые цилиндрические эвольвентные внешнего зацепления. Расчёт геометрии. М.: Издательство стандартов, 1983.
- 4. Сурков И.В. Автоматизация контроля параметров зубчатых колёс и передач // Станкоинструмент. 2016. № 1. С.80–87.
- 5. Сурков И.В., Буртовая А.И. Разработка математического обеспечения для размерноточностного анализа результатов координатных измерений // Прогрессивные технологии в машиностроении: сб. научных трудов. Челябинск: Издательский центр ЮУрГУ, 2012. С. 101–104.

Статья поступила в редакцию: 29.07.2022 г. Статья прошла рецензирование: 22.08.2022 г. Статья принята в работу: 24.08.2022 г.