УДК 621.372.6

МИНИМИЗАЦИЯ КОЭФФИЦИЕНТА ОТРАЖЕНИЯ МИКРОПОЛОСКОВОГО ДЕЛИТЕЛЯ МОЩНОСТИ СВЧ В ДИАПАЗОНЕ ЧАСТОТ ОТ 0 ДО 6 ГГц

И.А. Набатчиков

ФГУП «ВНИИФТРИ». Менделеево, Московская обл., Россия, nbnv@vniiftri.ru

Аннотация. В работе рассмотрены принципиальные схемы и материалы, применяемые при разработке и производстве микрополосковых делителей мощности СВЧ. Представлена разработанная модель топологии делителя мощности СВЧ со значением модуля комплексного эффективного коэффициента отражения выхода в заданном диапазоне частот, не превышающем 0,02.

Ключевые слова: ваттметр, комплексный эффективный коэффициент отражения, тонкоплёночный резистор.

MINIMIZING THE REFLECTION COEFFICIENT OF A MICROSTRIP POWER DIVIDER IN THE FREQUENCY RANGE FROM 0 TO 6 GHz

I.A. Nabatchikov

FSUE "VNIIFTRI", Mendeleevo, Moscow region, Russia, nbnv@vniiftri.ru

Abstract. The paper considers schematic diagrams and materials used in the development and production of microstrip microwave power dividers. The developed topology model of a microwave power divider with the value of the module of the complex effective reflection coefficient of the output in a given frequency range not exceeding 0,02 is presented.

Keywords: power meter, complex effective reflection coefficient, thin film resistor.

Среди технических и метрологических характеристик ваттметра проходного типа можно выделить коэффициент передачи единицы мощности СВЧ (далее — α). Уравнение измерения коэффициента передачи единицы мощности СВЧ ваттметра проходного типа методом непосредственного сличения [1] имеет вид:

$$\alpha = \frac{P_{\text{BO}}}{N_{\text{BII}}} \cdot \left(1 - 2 \cdot \left| \Gamma_{9} \right| \cdot \left| \Gamma_{\text{BO}} \right| \cdot \cos \left(\varphi_{9} + \varphi_{\text{BO}} \right) \right), \tag{1}$$

где $P_{\rm BO}$ — мощность, измеренная эталонным ваттметром оконечного типа (BO); $N_{\rm B\Pi}$ — показания ваттметра проходного типа (BП); $|\Gamma_9|$ — модуль комплексного эффективного коэффициента отражения выхода ВП; $|\Gamma_{\rm BO}|$ — модуль комплексного коэффициента отражения выхода ВО; ϕ_9 — фаза комплексного эффективного коэффициента отражения выхода ВП; $\phi_{\rm BO}$ — фаза комплексного коэффициента отражения выхода ВО.

Альманах современной метрологии, 2022, № 3 (31)

В ваттметрах проходного типа используется делитель мощности СВЧ. Модуль комплексного эффективного коэффициента отражения выхода $|\Gamma_9|$ определяется S-параметрами матрицы рассеяния делителя мощности СВЧ. В настоящее время при производстве микрополосковых делителей мощности СВЧ параметр $|\Gamma_9|$ не контролируется. Контроль этого параметра целесообразно осуществлять векторным анализатором цепей (ВАЦ) [2], измеряя S-параметры матрицы рассеяния. После чего значение $|\Gamma_9|$ рассчитывается по формулам:

$$\dot{\Gamma}_{9} = \dot{S}_{22} - \frac{\dot{S}_{32} \cdot \dot{S}_{21}}{\dot{S}_{31}},\tag{2}$$

$$\left|\Gamma_{\mathcal{I}}\right| = \sqrt{\left(\operatorname{Re}\dot{\Gamma}_{\mathcal{I}}\right)^{2} + \left(\operatorname{Im}\dot{\Gamma}_{\mathcal{I}}\right)^{2}},\tag{3}$$

где \dot{S}_{xx} — комплексные коэффициенты матрицы рассеяния делителя.

В ходе работы измерены известные серийные делители мощности СВЧ. Частотная зависимость модуля комплексного эффективного коэффициента отражения представлена на рис. 1.

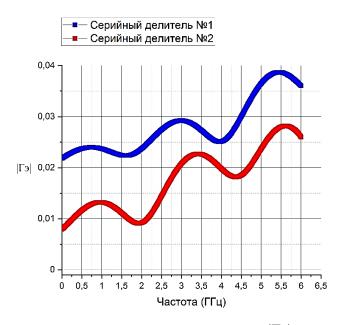


Рис. 1. Частотная зависимость $|\Gamma_{\ni}|$

Значение модуля комплексного эффективного коэффициента отражения в заданном диапазоне частот в случае серийного делителя № 1 приближается к 0,04, а в случае серийного делителя № 2 приближается к 0,03, что в значительной степени сказывается на погрешности из-за рассогласования. Таким образом, для уменьшения погрешности передачи СВЧ мощности при разработке и производстве делителя мощности СВЧ необходимо контролировать

его S-параметры матрицы рассеяния. По формуле (2) можно сделать вывод, что минимизация $|\Gamma_3|$ достигается путём попарного равенства S-параметров $\dot{S}_{22} = \dot{S}_{32}$ и $\dot{S}_{31} = \dot{S}_{21}$. Попарное равенство S-параметров может быть достижимо при принципиальной схеме делителя мощности СВЧ, которая подразумевает равное деление мощности и развязку не менее -12 dB между выходным и опорным каналами делителя. Принципиальные схемы делителя мощности СВЧ представлены на рис. 2.

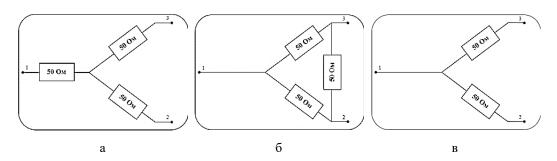


Рис. 2. Принципиальные схемы делителя мощности СВЧ

Таким образом, при разработке прецизионного делителя мощности СВЧ целесообразно использовать двухрезистивную схему (рис. 2в), так как схемы «Треугольник» (рис. 2а) и «Звезда» (рис. 2б), обеспечивая равное деление мощности СВЧ, не обеспечивают необходимую развязку между выходным и опорным каналами делителя.

Разработка топологии подразумевает выбор материалов для диэлектрического основания, проводящего полоска и плёночного резистора. Выбор материала для диэлектрического основания полосковых плат определяется эксплуатационными требованиями, предъявляемыми к радиотехнической аппаратуре, и производится по следующему перечню характеристик: диапазон частот, стабильность геометрических размеров в различных климатических условиях и в процессе эксплуатации, чистота обработки поверхностей, однородность, диэлектрическая проницаемость, тангенс угла диэлектрических потерь. На основе этих характеристик проведён анализ широко распространённых материалов для диэлектрического основания, в результате которого выбран RO4003C, так как обладает малой диэлектрической проницаемостью, низким уровнем потерь и стабильными электрическими свойствами в широком диапазоне частот [3].

Выбирая материал тонкоплёночного резистора, в процессе проектирования было учтено, что структура, а, следовательно, параметры плёнки и объёмного тела различаются. Структура плёнки сказывается на величине электрического сопротивления образца. Поэтому основной параметр — сопротивление —

характеризуют не удельной величиной ρ в Омах на метр (Ом · м), как это принято для объёмного тела [4], а сопротивлением плёнки ρ_s в Омах на квадрат (Ом/кв). Значение сопротивления плёночного полоскового резистора определяется по формуле:

$$R = \rho_{v} \cdot \left(\frac{l}{b \cdot \delta}\right) + 2 \cdot R_{\kappa}, \tag{4}$$

где ρ_{ν} — удельное объёмное сопротивление; R_{κ} — переходное сопротивление областей контактов резистивной и проводящей плёнок; δ — толщина резистивной плёнки; l — длина резистивной плёнки; b — ширина резистивной плёнки.

Широкое применение получил нихром (NiCr 80/20) [5]. Поверхностное сопротивление плёнки из этого сплава достигает 300 Ом/кв при малом температурном коэффициенте сопротивления. Температура испарения у этого сплава принимает весьма высокое значение, равное 1600 °C.

Микрополосковые линии и заземлённые пластины выполняются из металлов с малым удельным электрическим сопротивлением, обеспечивающим минимальные потери. В качестве заземляющей пластины обычно используют медь, алюминиевые сплавы или латунь. В качестве металлизации распространено применение чистой меди. При разработке топологии микрополоскового делителя мощности СВЧ в качестве материала для проводящего полоска и заземлённой пластины выбрана медь, так как она имеет наилучшее значение удельного электрического сопротивления р. В качестве защиты металлического слоя наиболее подходящим материалом является золото: в отличие от других материалов оно меньше всего подвержено процессу окисления, что благоприятно сказывается на качестве и длительности эксплуатации изделия.

Электродинамическое моделирование подтверждает теоретическое предположение равенства коэффициентов передачи \dot{S}_{21} и \dot{S}_{31} у делителей с одинаковыми выходным и опорным каналами. Таким образом, для минимизации $|\Gamma_9|$ необходимо добиться равенства \dot{S}_{22} и \dot{S}_{32} . Разработанные различные структуры топологии представлены на рис. 3.

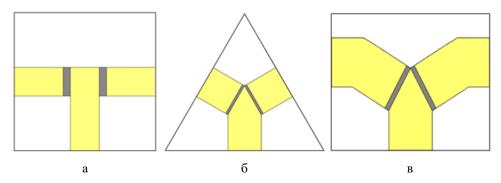


Рис. 3. Разработанные топологии прецизионного микрополоскового делителя мощности СВЧ

Полученные значения матрицы рассеяния в разработанной топологии (рис. 3а), характеризующейся углом между входным и опорным каналами в 90 градусов, обладают большой разницей, значение $|\Gamma_3|$ было приближено к единице. Решение сравнять углы между всеми каналами, представленное на рис. 26, оказало положительное влияние на S-параметры и позволило уменьшить $|\Gamma_3|$ в 2–3 раза. Решение сохранить значение угла деления между каналами, равное 120 градусам, и при этом сохранить угол между плоскостями входа и выхода в 90 градусов, представленное на рис. 3в, оказало наилучшее влияние на S-параметры.

Основываясь на *S*-параметрах электродинамической модели топологии прецизионного микрополоскового делителя мощности СВЧ (рис. 3в), получена частотная зависимость модуля комплексного эффективного коэффициента отражения, представленная на рис. 4. Также на рис. 4 представлены частотные зависимости модуля комплексного эффективного коэффициента отражения серийных делителей мощности СВЧ. Как видно из графиков, у разработанной модели топологии значения модуля комплексного эффективного коэффициента отражения в заданном диапазоне частот не превышают значения серийных делителей, полученные методом с применением векторного анализатора цепей. Более того, максимальное значение модуля комплексного эффективного коэффициента отражения у разработанного макета составило 0,015, что более чем в два раза меньше, чем у серийного делителя мощности СВЧ № 1, и почти в два раза меньше, чем у серийного делителя мощности СВЧ № 2.

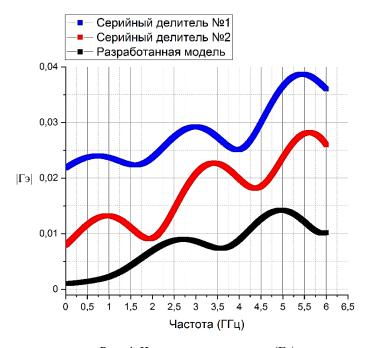


Рис. 4. Частотная зависимость $|\Gamma_{\ni}|$

Таким образом, применение разработанной топологии прецизионного микрополоскового делителя мощности СВЧ со значением модуля комплексного эффективного коэффициента отражения выхода $|\Gamma_3|$ менее 0,02 в диапазоне частот от 0 до 6 ГГц позволяет уменьшить погрешность измерения мощности СВЧ из-за рассогласования. Результаты работы могут быть применены при разработке отечественного делителя мощности СВЧ.

Список литературы

- 1. Чирков И.П. Разработка методов и средств воспроизведения и передачи единицы мощности электромагнитных колебаний в коаксиальных трактах в диапазоне от 0,03 до 67 ГГц: дис. ... канд. техн. наук: 05.11.15 Менделеево, 2016.
- 2. Матвеев А.И. Обоснование выбора метода измерений модуля эффективного коэффициента отражения выхода волноводных ваттметров проходного типа при их разработке и производстве // Метрология в XXI веке. Доклады VI научно-практической конференции молодых ученых, аспирантов и специалистов. 2016. С. 80–83.
- 3. Шершнев С.И., Ваганов М.А. Улучшение характеристик направленных микрополосковых ответвителей с помощью технологии низкотемпературной керамики // Волновая электроника и инфокоммуникационные системы: XXV Междунар. науч. конф. (СПб., 30 мая 3 июня 2022 г.): сб. статей: в 3 ч. Ч. 2. СПб.: ГУАП, 2022. С. 269–274.
- 4. Шмаков М., Паршин В. Гибридно-плёночные интегральные микросхемы: выбор материалов и что необходимо учитывать при конструировании // Технологии в электронной промышленности. 2007. № 2. С. 64–70.
- 5. Стуколкин К.К., Метёлкин Д.Э., Фёдоров Д.Г. Подгонка удельного сопротивления плёнок с помощью ионного травления // Дни науки и инноваций НОВГУ. 2020. С. 210–218.

Статья поступила в редакцию: 22.06.2022 г. Статья прошла рецензирование: 29.06.2022 г. Статья принята в работу: 25.07.2022 г.