Особенности высокоточной космической лазерной гравитационно-волновой антенны на основе спутников, движущихся по орбитам ГЛОНАСС

С.С. Донченко1, В.Ф. Фатеев1, Р.А. Давлатов1,2, П.Г. Харламов1, Е.А. Карауш1, Ю.В. Гостев1, Д.А. Соколов1, Е.А. Лавров1

1 ФГУП «ВНИИФТРИ», Менделеево, Московская обл.
2 ФГБОУ ВО «Московский государственный университет геодезии и картографии», Москва
donchenko_ss@vniiftri.ru,
fateev@vniiftri.ru,
davlatov_r_a@mail.ru,
harlamov@vniiftri.ru,
khanykova_ea@vniiftri.ru,
ghosteff@vniiftri.ru,
sokolov@vniiftri.ru,
lavrov@vniiftri.ru

«Альманах современной метрологии» № 3 (23) 2020, стр. 53–96

Статья в полном объеме (PDF)

УДК 52.08, 528.223

В статье приводится краткий анализ существующих разработок и проектов гравитационно-волновых антенн, отмечены их достоинства и недостатки. Предложена концепция развития российского космического детектора гравитационных волн «SOIGA» на орбитах ГЛОНАСС — «SOIGA-2». В проекте «SOIGA-2» предлагается использовать три орбиты по четыре космических аппарата. Это позволит повысить чувствительность антенны и точность определения местоположения источника гравитационных волн. Целью проекта «SOIGA-2» является детектирование гравитационных волн в частотном диапазоне от 0,01 до 10 Гц. В статье описаны источники таких гравитационных волн и их удаление от детектора. Сформированы требования к основным элементам детектора.

Ключевые слова: гравитационно-волновые антенны, космический детектор, гравитационные волны, спутники, орбиты ГЛОНАСС.

Цитируемая литература

1. Грищук Л.П. Реликтовые гравитационные волны и космология // УФН. 175:12. 2005. 1289–1303; Phys. Usp., 48:12. 2005. 1235–1247.

2. Webber J. Gravitational-Wave-Detector Events // Phys. Rev. Lett. 1968. 20. 1307.

3. Герценштейн М.Е., Пустовойт В.И. К вопросу об обнаружении гравитационных волн малых частот // ЖЭТФ. 1962. 605; Gertsenshtein M.E., Pustovoit V.I. On the detection of low frequency gravitational waves // Sov. Phys. JETP. 1963. 16. 433.

4. Abbott B.P. et al. Observation of Gravitational Waves from a Binary Black Hole Merger / LIGO Scientific Collaboration and Virgo Collaboration // Physical Review Letters. 2016. V. 116. No. 6. DOI:10.1103 / Phys. Rev. Lett. 116.061102.

5. Ni W.-T. Classification of Gravitational Waves // Mod. Phys. Lett. 2010. A 25. 922. 17.

6. Abramovici A., Althouse W.E., Drever R.W.P. et al. LIGO: The Laser Interferometer Gravitational-Wave Observatory // Science. 1992. V. 256. No. 5055. P. 325–333.

7. Ando M., Arai K., Takahashi R. et al. Stable Operation of a 300-m Laser Interferometer with Sufficient Sensitivity to Detect Gravitational-Wave Events within Our Galaxy // Physical Review Letters. 2001. V. 86. No. 18. P. 3950–3954.

8. Willke B., Aufmuth P., Aulbert C. et al. The GEO 600 gravitational wave detector // Classical and Quantum Gravity. 2002. V. 19. No. 7. P. 1377–1387.

9. David Blair (ed.). AIGO Stage II. Australian Consortium for Interferometric Gravitational Astronomy (ACIGA). 2006. P. 30.

10. Балакин А.Б., Кисунько Г.В., Мурзаханов З.Г., Скочилов А.Ф. Пентагон как уникальная геометрическая конфигурация для кольцевого лазерно-интерферометрического детектора периодического гравитационного излучения // Доклады Академии наук России. 1996. Т. 346. № 1. С. 39–42.

11. Tsubono K. Gravitational Wave Experiments / edited by E. Coccia, G. Pizzella, F. Ronga. Singapore: World Scientific, 1995. P. 112–114.

12. Aso Y. et al. Interferometer design of the KAGRA gravitational wave detector // Phys. Rev. D. 20 August 2013. V. 88. P. 043007.

13. Punturo M. et al. The Einstein Telescope: a third-generation gravitational wave observatory // Class. Quantum Grav. 2010. 27. 194002.

14. Essick R., Vitale S., Evans M. Frequency-dependent responses in third generation gravitational-wave detectors // Phys. Rev. D. 2017. 3 October. 96. 084004.

15. Unnikrishnan C.S. IndIGO and LIGO-India: Scope and Plans for Gravitational Wave Research and Precision Metrology in India // International Journal of Modern Physics. 2013. D. 22. 41010-10.1142/S0218271813410101.

16. Barriga P. et al. AIGO: A southern hemisphere detector for the worldwide array of ground-based interferometric gravitational wave detectors // Classical and Quantum Gravity. 2010. 27 084005. 10.1088/0264-9381/27/8/084005.

17. Coccia E., Fafone V., Frossati G., Lobo J.A. and Ortega J.A. Hollow sphere as a detector of gravitational radiation // Phys. Rev. D. 1998. 57. 2051–2060.

18. Astone P. The next science run of the gravitational wave detector // NAUTILUS CQG. 2002. 19. 1911–1912.

19. Astone P. et al. Long-term operation of the Rome Explorer cryogenic gravitational wave detector // Phys. Rev. D. 47. 2. DOI: 10.1103; Phys. Rev. D. 1993. 47. 362.

20. Prodi G.A., Conti L., Mezzena R., Vitale S., Taffarello L., Zendri J.-P., Baggio L., Cerdonio M., Colombo A., Crivelli Visconti V. et al. Initial operation of the gravitational wave detector AURIGA / edited by E. Coccia, G. Veneziano and P.G. / Gravitational Waves. Proc. of the 2nd Edoardo Amaldi Conference on Gravitational Waves. Singapore: World Scientific, 1999. P. 148.

21. Bezrukov L.B., Kvashnin N.L., Motylev A.M., Oreshkin S.I., Popov S.M., Rudenko V.N., Samoilenko A.A., Yudin, I.S. A precise system for measuring weak optoacoustic perturbations // Instruments and Experimental Techniques. 2010. 53 (3). P. 423–429.

22. Blair D.G., Ivanov E.N., Tobar M.E., Turner P.J., van Kann F., Heng I.S. High Sensitivity Gravitational Wave Antenna with Parametric Transducer Readout // Phys. Rev. Lett. 1995. 74. 1908.

23. Mauceli E., Geng Z.K., Hamilton W.O., Johnson W.W., Merkowitz S., Morse A., Price B. and Solomonson N. The Allegro gravitational wave detector: Data acquisition and analysis // Phys. Rev. D. 1996. 54. 1264.

24. Халилов Э.Н. Гравитационные волны и геодинамика / Под ред. В.Е. Хаина; Международная академия наук; Международный совет по научному развитию. М.: Элм-ICSD/IAS, 2004. 330 с.

25. Ni W.-T. One Hundred Years of General Relativity From Genesis and Empi­rical Foundations to Gravitational Waves, Cosmology and Quantum Gravity: in 2 v. World Scientific Publishing, 2017.

26. Jenet F. et al. The North American Nanohertz Observatory for Gravitational Waves. ArΧiv:0909.1058 (2009).

27. Lentati L. et al. European Pulsar Timing Array limits on an isotropic stochastic gravitational-wave background // MNRAS. 2015. 453. 2576.

28. Kerr M. et al. The Parkes Pulsar Timing Array Project: Second data release. ArXiv:2003.09780 (2020).

29. Sazhin M.V. Opportunities for detecting ultralong gravitational waves // Sov. Astron. 1978. V. 22. P. 36–38.

30. Detweiler S.L. Pulsar timing measurements and the search for gravitational waves // The Astrophysical Journal. IOP Publishing, 1979. V. 234. P. 1100–1104. DOI: 10.1086/157593.

31. Faller J.E., Bender P.L. A possible laser gravitational wave experiment in space / Program and Abstracts of Second International Conference on Precision Measurement and Fundamental Constants (PMFC-II), 8–12 June 1981. National Bureau of Standards. Gaithersburg, Maryland, USA.

32. Faller J.E., Bender P.L., Hall J.L., Hils D., Vincent M.A. Space antenna for gravitational wave astronomy / Proc. Colloquium on Kilometric Optical Arrays in Space. ESA, 1985. SP-226.

33. Folkner W.M., Bender P.L., Stebbins R.T. LISA mission concept study. Jet Propulsion Laboratory, 1998.

34. LISA study team. LISA — Laser Interferometer Space Antenna: Pre-Phase A Report. ESA, 1998.

35. LISA — study of the Laser Interferometer Space Antenna: final technical report. Astrium. 2000.

36. Hammesfahr A. LISA mission study overview // Class. Quant. Grav. 2001. 18: 4045–4051.

37. Giuseppe D. Racca, Paul W. McNamara. The LISA Pathfinder Mission, Tracing Einstein’s Geodesics in Space // Space Science Reviews. V. 151. No. 1–3. March 2010. P. 159–181. DOI: 10.1007/s11214-009-9602-x.

38. Armano M. LISA Pathfinder // AIP Conference Proceedings. 2006. 873. 49. URL: https://doi.org/10.1063/1.2405021

39. Ni W.-T. ASTROD and gravitational waves / Eds. K. Tsubono, M.-K. Fujimoto and K. Kuroda // Gravitational Wave Detection. Tokyo: Universal Academy Press, 1997. P. 117–129.

40. Ni W.-T. ASTROD Optimized for Gravitational-wave Detection: ASTROD-GW — Pre-Phase a study proposal submitted to Chinese Academy of Sciences. February 26, 2009.

41. Ni W.-T., Wu A.-M. Orbit design of ASTROD-EM, paper in preparation.

42. Ni W.-T. Super-ASTROD: Probing primordial gravitational waves and mapping the outer solar system // Class. Quantum Grav. 2009. 26. 075021. ArXiv: 0812.0887.

43. Kawamura S. et al. The Japanese space gravitational wave antenna — DECIGO // Class. Quantum Grav. 2006. 23. S125.

44. Sato S. et al. The status of DECIGO // Journal of Physics: Conf. Series. 2017. 840. 012010.

45. Crowder J., Cornish N. J. Beyond LISA: Exploring future gravitational wave missions // Phys. Rev. 2005. D. 72. 083005.

46. Bender P.L. Additional astrophysical objectives for LISA follow-on missions // Class. Quantum Grav. 200421. S1203.

47. Gong X. et al. Roadmap for gravitational wave detection in space — a preliminary study // Class. Quantum Grav. 2011. 27. 084010.

48. Bender P.L., Begelman M.C., Gair J.R. Possible LISA follow-on mission scientific objectives // Class. Quantum Grav. 2013. 30. 165017.

49. Jennrich O. et al. ESA/SRE. 2011. 19. 2012.

50. Jun Luo et al. TianQin: a space-borne gravitational wave detector // Class. Quantum Grav. 2016. 33. 035010. P. 19.

51. Luo Z. et al. A brief analysis to Taiji: Science and technology // Results in Physics. March 2020. V. 16. 102918.

52. Conklin J.W. et al. LAGRANGE: LAser GRavitational-wave ANtenna at GEo-lunar Lagrange points. 2011. ArXiv:1111.5264 [astro-ph.IM].

53. Wang Y. et al. Octahedron configuration for a displacement noise-cancelling gravitational wave detector in space // Phys. Rev. D. 2013. 88. 104021.

54. Sato S. et al. Demonstration of displacement-noise-free interferometry using bi-directional Mach–Zehnder interferometers // Class. Quantum Grav. 2008. 25. 114031. P. 8. DOI:10.1088/0264-9381/25/11/114031.

55. Hiscock B., Hellings R.W. gLISA: geosynchronous laser interferometer space antenna concepts with off-the-shelf satellites // Bull. Am. Astron. Soc. 1997. 29. 1312.

56. Benacquista M.J. OMEGA Sources and Science / 34th Rencontres de Moriond: Gravitational Waves and Experimental Gravity. 2000. 101–106.

57. Tinto M., de Araujo J.C.N., Aguiar O.D., Alves M.E.S. 2011. ArXiv: 1111.2576.

58. McWilliams S.T. Geostationary Antenna for Disturbance-Free Laser Interferometry (GADFLI). 2018. ArXiv: 1111.3708.

59. Bender P., Brillet A. et al. LISA. Laser Interferometer Space Antenna for the detection and observation of gravitational waves. Pre-Phase A Report Second edition. 1998. P. 80.

60. Пустовойт В.И., Донченко С.И., Денисенко О.В., Фатеев В.Ф. Концепция создания космической лазерной гравитационной антенны на геоцентрической орбите ГЛОНАСС «SOIGA» // Альманах современной метрологии. 2020. № 1 (21). С. 27–49.

61. Интерфейсный контрольный документ «Глобальная навигационная спутниковая система». Ред. 5.1. М.: РКС, 2008.

62. Buonanno A., Sathyaprakash B.S. General Relativity and Gravitation: A Centennial Perspective, Chapter 6: Sources of Gravitational Waves: Theory and Observations. 2014.

63. Laser Interferometer Space Antenna for the detection and observation of gravitational waves. Pre-Phase a Report. Second edition. July 1998.

64. Nelemans G. Galactic Binaries as Sources of Gravitational Waves. 2003. 686. 10.1063/1.1629441.

65. Abbott B.P. et al. Observation of Gravitational Waves from a Binary Black Hole Merger // Phys. Rev. Lett. 2016. No. 116. 061102.

66. Blanchet L., Damour T., Iyer B.R., Will C.M., Wiseman A.G. Gravitational-Radiation Damping of Compact Binary Systems to Second Post-Newtonian Order // Phys. Rev. Lett. 1995. No. 74. 3515.

67. Пустовойт В.И. К вопросу о непосредственном обнаружении гравитационных волн // Физические основы приборостроения. 2016. Т. 5. № 1 (18). С. 6–19.

68. Abbott B.P. et al. Properties of the Binary Black Hole Merger GW150914 // Phys. Rev. Lett. 2016. No. 116. 241102.

69. Karsten Danzman et al. Laser Interferometer Space Antenna. Proposal in response to ESA call for L3 mission concepts. 2017.

70. Jun Luo et al. TianQin: a space-borne gravitational wave detector [Electronic resource]. 2015. URL: https://arxiv.org/abs/1512.02076.

71. Conklin J.W. et al. LAGRANGE: LAser GRavitational-wave ANtenna at GEo-lunar L3, L4, L5 [Electronic resource]. 2011. URL: https://arxiv.org/abs/1111.5264.

72. Shuichi Sato et al. The status of DECIGO, IOP Conf. Series // Journal of Physics: Conf. Series 84. 2017.

73. Lacoura S. SAGE: using CubeSats for Gravitational Wave Detection [Electronic resource]. 2018. URL: https://arxiv.org/abs/1806.08106.

74. Tse M., Haocun Yu., Kijbunchoo N. et al. Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave Astronomy // Physical Review Letters. 2019. 123. 231107.

75. Zoellner A., Hultgren E., Trittler M., Sun K.-X., Byer R.L. Integrated Differential Object Shadow Sensor (DOSS) for Modular Gravitational Reference Sensor (MGRS) // Proceedings of the 8th International LISA Symposium, Journal of Physics Conference Series. 2011.

76. Zoellner A. et al. A differential optical shadow sensor for sub-nanometer displacement measurement and its application to drag-free satellites. 2018. ArXiv: 1708.09335v2.

77. Wakabayashi Y., Obuchi Y., Okada N., Torii Y., Ejiri Y., Suzuki R., Ueda A., Kawamura S., Araya A., Ando M., Sato S., Sugamoto A. Structural design and analysis of test mass module for DECIGO Pathfinder. 2009. DOI:10.1088/1742-6596/228/1/012047.

78. Armano M. et al. LISA Pathfinder: preprint of an article submitted for consideration in Lepton-Photon 2017 conference proceedings. ArXiv: 1903.08924.

79. Huarcaya V., Apelbaum G., Haendchen V., Wang Q., Heinzel G., Mehmet M. Five degrees of freedom test mass readout via optical levers // Class. Quant. 2019. 37 (2020). 2. 025004. DOI: 10.1088/1361-6382/ab5c73.

80. Saraf S. et al. Ground testing and flight demonstration of charge management of insulated test masses using UVLED electron photoemission // Classical and Quantum Gravity. 2016. V. 33. No. 24. DOI: 10.1088/0264-9381/33/24/245004).

81. Stebbins R.T., Bender P.L. et al. Current error estimates for LISA spurious accelerations // Class. Quantum Grav. 2004. 21. P. 653–660.

82. Canizares P. et al. The LISA Pathfinder DMU and Radiation Monitor // Class. Quantum Gravity. 2009. 26. 094005.

83. Lobo A., Nofrarias M., Ramos-Castro J., Sanjuán J. On-ground tests of the LISA PathFinder thermal diagnostics system // Class. Quantum Gravity. 2006. 23. 5177.

84. Sanjuán J., Lobo A., Nofrarias M., Ramos-Castro J., Riu P.J. Thermal diagnostics front-end electronics for LISA Pathfinder // Rev. Sci. Instrum. 2007. 78. 104904.

85. Lobo A., Nofrarias M., Sanjuán J. // Class. Quantum Grav. 2005. 22. 10.

86. Sanjuán J. et al. Thermal diagnostics frond-end electronics for LISA Pathfinder // Rev. Sci. Instrum. 2007. 78. 104904.

87. Chiu M.C. et al. ACE Spacecraft // Space Science Reviews. 1998. V. 86. P. 257–284.

88. Sanjuán J. et al. Magnetic polarization effects of temperature sensors and heaters in LISA Pathfinder // Review of Scientific Instruments. 2008. 79. 084503. DOI: 10.1063/1.2968113.

89. Canizares P. et al. The diagnostics subsystem on board LISA Pathfinder and LISA // Class. Quantum Grav. 2009. 26. 094005. P. 11. DOI: 10.1088/0264-9381/26/9/094005.

90. Уманский С.П. Человек в космосе. М.: Воениздат, 1970. 192 с.

91. Armano M. et al. LISA Pathfinder micronewton cold gas thrusters: In-flight characterization // Physical Review. D. 2019. 99. 122003.

92. Микрин Е.А. и др. Моделирование возмущений орбит космических аппаратов, высокоточный прогноз эфемерид спутников ГЛОНАСС и GPS // Новости навигации. 2014. № 3. С. 9–18.

93. Electrospray Thrusters [Electronic resource]. com. URL: http://www.bu­sek.com/technologies__espray.htm. Accessed: 8 March 2020.

94. Order [Electronic resource]. Enpulsion.com. URL: https://www.enpulsion.com/order/. Accessed: 8 March 2020.

95. Алемасов В.Е., Дрегалин А.Е., Тишин А.П. Теория ракетных двигателей: учеб. для вузов / Под ред. В.П. Глумашко. М.: Машиностроение, 1980. 533 с.

96. Edgar Y. A Critical History of Electric Propulsion: The First 50 Years (1906–1956) // Choueiri in Journal of Propulsion and Power. 2004. V. 20. No. 2. P. 193–203.

97. Choueiri E.Y. New dawn of electric rocket. Scientific American. 2009. 300. P. 58–65. DOI: 10.1038/scientificamerican0209-58.

98. Wiegmann B.M. et al. The Heliopause Electrostatic Rapid Transit System (HERTS) — Design, Trades, and Analyses Performed in a Two Year NASA Investigation of Electric Sail Propulsion Systems / AIAA Propulsion and Energy Forum 10–12 July 2017. Atlanta. GA 53rd AIAA/SAE/ASEE Joint Propulsion Conference.

Статья в полном объеме в Научной электронной библиотеке eLIBRARY.
Оформить подписку и купить печатные номера журнала у издателя.